# Quad Meshing

USTC, 2025 Spring

Qing Fang, <u>fq1208@mail.ustc.edu.cn</u> <u>https://qingfang1208.github.io/</u>

# Quad Meshing

#### Generate a quad (or quad-dominant) mesh that approximates the input



Input

Quad Dominant Mesh

Quad Mesh

#### Fitting B-spline surfaces



- Fitting B-spline surfaces
- > Simulation



- Fitting B-spline surfaces
- Simulation
- Fexture atlas



- Fitting B-spline surfaces
- Simulation
- Texture atlas
- > Modeling & design



- Fitting B-spline surfaces
- Simulation
- > Texture atlas
- Modeling & design
- Architecture



> Lengths/angles distribution



- Lengths/angles distribution
- > Orthogonality



Lengths/angles distribution

Valence:

2

- Orthogonality
- > Regularity



3

5

6



- Lengths/angles distribution
- Orthogonality
- > Regularity
- > Planarity



- Lengths/angles distribution
- Orthogonality
- > Regularity
- Planarity
- Feature alignment



## Methods

#### Structure from curve tracing



Anisotropic Polygonal Remeshing [Alliez et al., Siggraph 2003]

Compute curvature directions



Min curvature

Max curvature

**Cross Field** 

Compute curvature directions



Umbilics: minimal curvature = maximal curvature

Compute curvature directions

Umbilics generate singularities in cross field There is no consistent selection of 1 direction which gives a smooth vector field



- Compute curvature directions
- Find Umbilics/Singularities



Conformal parameterization

2D tensor field using barycentric coordinates

- Compute curvature directions
- Find Umbilics/Singularities



Regular case

Minor directions

Major directions

**Both directions** 

- Compute curvature directions
- Find Umbilics/Singularities





- Compute curvature directions
- > Find Umbilics/Singularities
- > Trace curvature lines
- 1. Generate curves tangent to cross field
- Intersection of curves → vertices of quad mesh



- Compute curvature directions
- Find Umbilics/Singularities
- > Trace curvature lines



- Compute curvature directions
- Find Umbilics/Singularities
- > Trace curvature lines
- > Overlay



Add umbilic points in isotropic regions

- Compute curvature directions
- Find Umbilics/Singularities
- > Trace curvature lines
- Overlay
- > Meshing



- Compute curvature directions
- Find Umbilics/Singularities
- > Trace curvature lines
- > Overlay
- > Meshing



Edges

curvatures

Delaunay

umbilics

- Compute curvature directions
- Find Umbilics/Singularities
- > Trace curvature lines
- Overlay
- > Meshing



## Methods

- Structure from curve tracing
- Parameterization from cross fields





#### Parameterization from cross fields



#### Parameterization from cross fields

- > Integrability: given f find g, s.t.  $f = \nabla g$
- Only possible if f is "integrable"

#### A vector field U is locally integrable iff $\nabla \times U = 0$



Hodge-Helmholtz Decomposition

#### Parameterization from cross fields

> Potential field :min  $\int \|\nabla u - X\|^2 \to \Delta u = -\nabla \cdot X$ 

> Curl-component:  $\min_{u} \int \|\mathcal{J}\nabla v - X\|^2 \to [\Delta v]_{ij} = -[\nabla \times X]_{ij}$ 



**Edge-based Poisson equation** 

Dual mesh

> Assure local integrability of input cross fields  $X = (X_1, X_2)$ 

$$Y_1 = X_1 - \mathcal{J}\nabla v_1, \qquad Y_2 = X_2 - \mathcal{J}\nabla v_2$$

#### > Assure global continuity of Y along Homology gens





> Assure local integrability of input cross fields  $X = (X_1, X_2)$ 

 $Y_1 = X_1 - \mathcal{J}\nabla v_1, \qquad Y_2 = X_2 - \mathcal{J}\nabla v_2$ 

- > Assure global continuity of Y + H along Homology gens
- <sup>1.</sup> Compute Homology generators  $\gamma_1, \dots, \gamma_{2,g}$  (= basis of all closed loops)
- 2. Measure mismatch  $\int_{\gamma_i} Y_1 ds \in \mathbb{R}$ ,  $\int_{\gamma_i} Y_2 ds \in \mathbb{R}$

<sup>3.</sup> Compute  $L_2$  smallest harmonic vector fields  $H_j$ , j = 1,2 s.t.  $\int_{v_i} (Y_j + H_j) ds \in \mathbb{Z}$ 

> Assure local integrability of input cross fields  $X = (X_1, X_2)$ 

$$Y_1 = X_1 - \mathcal{J}\nabla v_1, \qquad Y_2 = X_2 - \mathcal{J}\nabla v_2$$

#### > Assure global continuity of Y + H along Homology gens



> Assure local integrability of input cross fields  $X = (X_1, X_2)$ 

$$Y_1 = X_1 - \mathcal{J}\nabla v_1, \qquad Y_2 = X_2 - \mathcal{J}\nabla v_2$$

- > Assure global continuity of Y + H along Homology gens
- > Global integration of Y + H on the mesh gives parameterization





## Methods

- Structure from curve tracing
- Parameterization from cross fields
- > Mix-integer optimization
- <u>1. Mixed-Integer Quadrangulation</u>
- 2. Instant Field-Aligned Meshes
- 3. ...