

GAMES 301: 第11讲

共形参数化2 离散共形等价类、Möbius变换&曲率流

方清 中国科学技术大学

- **1. Conformal mapping on Riemann metric**
- 2. Conformal equivalence of triangle meshes
- 3. Piecewise Möbius transformation
- 4. Ricci flow and Calabi flow

Conformal mapping on Riemann metric

有天下关才

Differential

- Cauchy-Riemann equation
 - Plane : df(i) = idf(1)
 - Manifold : $df(J_M v) = J_N df(v), \forall v \in T_p M$

- Spin transformation:
 - -Quaternions

(v)

Riemann metric

- Riemann metric
 - $-g_p: T_pM \times T_pM \to \mathbb{R}$ bilnear
 - $-|X| = \sqrt{g_p(X, X)}, \forall X \in T_p M$
 - $-\theta[X,Y] = \arccos(g_p(X,Y)/|X||Y|)$
- Change with conformal mapping
 - $\mathsf{g}_p(df \circ X, df \circ Y) \Rightarrow \mathsf{g}'_p : T_p M \times T_p M \to \mathbb{R}$
 - $-g'_p(X,Y) = |df(X)||df(Y)|\cos\theta[df(X),df(Y)]$
 - $-g'_p(X,Y) = s^2 g_p(X,Y), \ \forall X,Y \in T_p M$

 $\mathbf{g}_p' = e^{2\lambda} \mathbf{g}_p, \quad \lambda: \text{ log conformal factor}$

Isometric deformation

7

Curvature

- Normal curvature
- Principle curvature

Uniformization Theorem

• Riemannian metric on any surface is conformally equivalent to one with constant Gaussian curvature (flat, spherical, hyperbolic).

$$g' = e^{2\lambda}g$$

Uniformization Theorem

- Parameterization to canonical domain
- Cross-parameterization

Uniformization Theorem

- From curvature to metric
 - Target curvature

$$K' = 0, \qquad \kappa' = \frac{1}{2}$$

- Log conformal factor $\lambda: M \to \mathbb{R}$

• Flattening to plane

$$-\mathbf{g}'=e^{2\lambda}\mathbf{g}$$

- No distortion

For any point p on Riemann manifold (M,g), ∃U(p) ⊂ M and local coordinate (s,t), s.t.

Gaussian curvature

Geodesic curvature

Yamabe equation

Non linear differential equation

$$-\begin{cases} K' = e^{-2\lambda} (K - \Delta_{g} \lambda) \\ \kappa' = e^{-\lambda} (\kappa - \partial_{n}^{M} \lambda) \end{cases}$$

Conformal equivalence of triangle meshes

有天下共才

Discrete conformal metric

- Smooth Riemann metric
 - $|X| = \sqrt{g_p(X, X)}, \forall X \in T_p M$ $|X'| = e^{\lambda} |X|, \forall X \in T_p M$

• Discrete metric $-l: E \to \mathbb{R}^+ \Longrightarrow e_{ij} \to l_{ij}$ $-l'_{ii} = e^{(\lambda_i + \lambda_j)/2} l_{ij}, \quad \lambda: V \to \mathbb{R}$

Conformal equivalence of triangle meshes

 v_i

 \boldsymbol{v}_m

 l_{ii}

 \boldsymbol{v}_k

 \boldsymbol{v}_i

- From log conformal factor: $l'_{ij} = e^{(\lambda_i + \lambda_j)/2} l_{ij}$
- From length cross ratio: $c_{ij} = \frac{l_{ki}l_{mj}}{l_{im}l_{jk}} \Longrightarrow c'_{ij} = c_{ij}$

$$c_{ij}' = \frac{l_{ki}'}{l_{im}'} \frac{l_{mj}'}{l_{jk}'} = \frac{l_{ki}e^{(\lambda_k + \lambda_i)/2}}{l_{im}e^{(\lambda_i + \lambda_m)/2}} \frac{l_{mj}e^{(\lambda_m + \lambda_j)/2}}{l_{jk}e^{(\lambda_j + \lambda_k)/2}} = \frac{l_{ki}}{l_{im}} \frac{l_{mj}}{l_{jk}} = c_{ij}$$

For *ijk*,
$$\lambda_i^{jk} = \log(\frac{l'_{ij}l'_{ik}}{l'_{jk}} / \frac{l_{ij}l_{ik}}{l_{jk}})$$
; for *imj*, $\lambda_i^{mj} = \log(\frac{l'_{im}l'_{ij}}{l'_{mj}} / \frac{l_{im}l_{ij}}{l_{mj}})$

Springborn, B. et al. (2008). Conformal equivalence of triangle meshes. ACM SIGGRAPH.

Optimizing log conformal factor

ø

• Treating angle as function of $\lambda: V \to \mathbb{R}$

$$\theta'_{i}^{jk} = \arccos \frac{l'_{ij}^{2} + l'_{ik}^{2} - l'_{jk}^{2}}{2l'_{ij}l'_{ik}}$$

n

- Parameterizing to a planar shape
 - - $\sum_{ijk\in St(i)} \theta'_{i}^{jk} = 2\pi, \forall i \text{ interior vertex}$
 - - $\sum_{ijk\in St(i)} \theta'_{i}^{jk} = \beta_{i}$, for *i* boundary vertex
- Optimizing a convex energy

$$-E(\lambda) = \sum_{ijk\in T} f(t_{ij}, t_{jk}, t_{ki}) + \frac{1}{2} \sum_{i} \alpha_{i} \lambda_{i}, \ t_{ij} = \log l'_{ij}$$
$$-\frac{\partial E}{\partial \lambda_{i}} = \frac{1}{2} \left(\alpha_{i} - \sum_{ijk\in St(i)} \theta'_{i}^{jk} \right) = 0 \Longrightarrow \alpha_{i} = \sum_{ijk\in St(i)} \theta'_{i}^{jk}$$

Optimizing log conformal factor

Springborn, B. et al. (2008). Conformal equivalence of triangle meshes. ACM SIGGRAPH.

 λ_2

Ω

m

la la

Geodesic distance

- Edge flip for global minimum λ^* - $l'_{jk} + l'_{ki} \le l'_{ij}$
 - $-l'_{ij} \rightarrow l'_{km} = e^{(\lambda_k + \lambda_m)/2} l_{km}$
- \bullet From planar to \mathbb{R}^3

Constraining length cross ratio

• Linearizing constraint:

$$\log c_{ij} = \log(\frac{l_{ki}}{l_{im}}\frac{l_{mj}}{l_{jk}}) = t_{ki} + t_{mj} - t_{im} - t_{jk} \equiv const$$

- Mesh conformal deformation
 - Optimizing the vertex location $\boldsymbol{v}_i \in \mathbb{R}^3$
 - Treating the t_{ij} as the function of $v_i \Longrightarrow \delta t = J \delta v$
 - Constraint $L\mathbf{t} \equiv const \Rightarrow L\delta\mathbf{t} = LJ\delta\mathbf{v} = \mathbf{0}$
- Minimizing energy E(v) under conformal mapping
 - Local minima: $\langle \frac{\partial E}{\partial v}, \delta v \rangle = 0, \forall \delta v \in \{LJ\delta v = 0\}$
 - Projected gradient descent

Constraining length cross ratio

Ç,

Optimizing Willmore energy:

Piecewise Möbius transformation

有天下共才

Möbius transformation

•
$$f: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$$

- $f(z) = \frac{az+b}{cz+d}$, $ad - bc \neq 0$. (If $ad = bc$, then $f(z) = \frac{c(az+b)}{c(cz+d)} = \frac{caz+ad}{c(cz+d)} = \frac{a}{c}$)
- Translation $z \mapsto z + t_1$, dilation $z \mapsto t_2 z$, inversion $z \mapsto \frac{1}{z}$

• Circle preservation (Line as circle with radius ∞)

Piecewise Möbius transformation

Piecewise Möbius transformation

• Preserving length cross ratio:

$$- w_{ij} = \frac{(z_k - z_i)(z_m - z_j)}{(z_i - z_m)(z_j - z_k)} \Longrightarrow |w_{ij}| = \left| \frac{(z_k - z_i)(z_m - z_j)}{(z_i - z_m)(z_j - z_k)} \right| = \frac{l_{ki}l_{mj}}{l_{im}l_{jk}} - |w'_{ij}| = \left| \frac{D_k^{ij} D_i^{jk} D_m^{ji} D_j^{ii}}{D_i^{mj} D_m^{ji} D_j^{ki} D_k^{ij}} \right| |w_{ij}| = \left| \frac{D_i^{jk} D_j^{im}}{D_i^{mj} D_j^{ki}} \right| |w_{ij}| - \text{Combining } D_i^{jk} D_j^{ki} = D_i^{mj} D_j^{im} \Longrightarrow \left| D_i^{jk} \right| = \left| D_i^{mj} \right|, \forall i$$

$$Z_k$$
 I_{ij} Z_m

• Preserving circle intersection angles:

$$-\cos \alpha_{e} = -\frac{Re(w_{ij})}{|w_{ij}|}$$

- Combining $D_{i}^{jk} D_{j}^{ki} = D_{i}^{mj} D_{j}^{im} \implies D_{i}^{jk} \overline{D}_{i}^{mj} \in \mathbb{R}, \forall i$

Piecewise Möbius transformation

- Conformal constraint:
 - Preserving length cross ratio: $\left|D_{i}^{jk}\right| = \left|D_{i}^{mj}\right|$, $\forall i$
 - Preserving circle intersection angles: $D_i^{jk}\overline{D}_i^{mj} \in \mathbb{R}, \forall i$
 - Preserving both: $D_i^{jk} = D_i^{mj}$, $\forall i$ (as Möbius as possible)

Vaxman, A. et al. (2015). Conformal mesh deformations with Möbius transformations. ACM Transactions on Graphics.

Ricci flow and Calabi flow

有天下并才

Ricci flow

- Ricci energy: $E(g) = \int (K(g) + |\nabla f|^2) e^{-f} d\mu$, f dilaton function
- Ricci flow (gradient flow): $\frac{\partial g}{\partial t} = -\nabla E = -2(K(g) K')g$
- Conformal metric: $g = e^{2\lambda}g^0 \implies E(\lambda)$ convex and $\frac{\partial \lambda}{\partial t} = K' K(\lambda)$

Discrete Ricci flow

- Log conformal factor: $\lambda_i : \boldsymbol{v}_i \in V \to \mathbb{R}, \forall i$
- Discrete Ricci flow: $\frac{\partial \lambda_i}{\partial t} = K'_i K_i$

Gradient descent

Gradient descent

• Update :
$$\lambda_i \leftarrow \lambda_i + t(K' - K(\lambda))$$

- From λ_i to compute K_i - $\theta_i^{jk} = \arccos \frac{l_{ij}^2 + l_{ik}^2 - l_{jk}^2}{2l_{ij}l_{ik}}$ - $K_i = 2\pi - \sum_{t_{ijk} \in St(i)} \theta_i^{jk}$
- Dynamic triangulation
 - Flip-on-degeneration
 - Flip-on-Delaunay-violation

- 1. Initialize: $\lambda_i = 0$, $l_{ij} = l_{ij}^0$
- 2. Computing θ_i^{jk} and K_i using l_{ij}
- 3. If $||K' K|| < \epsilon$, terminate
- 4. Update $\lambda_i \leftarrow \lambda_i + t(K' K)$
- 5. Update $l_{ij} = e^{\frac{\lambda_i + \lambda_j}{2}} l_{ij}^0$ and dynamic

triangulation

6. Repeat 2-5

Newton method

• Gradient:

$$\nabla E(\lambda_i) = K_i - K_i'$$

Hessian matrix

$$H_{ij} = \frac{\partial K_i}{\partial \lambda_j} = \Delta_{ij}$$

• Update :

$$\lambda_i \leftarrow \lambda_i + t \left(\Delta^{-1} (K' - K) \right)_i$$

- 1. Initialize: $\lambda_i = 0$, $l_{ij} = l_{ij}^0$
- 2. Computing θ_i^{jk} , K_i and Δ using l_{ij}
- 3. If $||K' K|| < \epsilon$, terminate
- 4. Update $\lambda_i \leftarrow \lambda_i + t (\Delta^{-1}(K' K))_i$
- 5. Update $l_{ij} = e^{\frac{\lambda_i + \lambda_j}{2}} l_{ij}^0$ and dynamic

triangulation

Dynamic triangulation

- Dynamic triangulation
 - Flip-on-degeneration
 - Flip-on-Delaunay-violation
- Newton method
 - Local flip
 - Global solver

Plane embedding

Yang, Yong-Liang, et al. "Generalized discrete Ricci flow." Computer Graphics Forum. Vol. 28. No. 7. Oxford, UK: Blackwell Publishing Ltd, 2009.

Calabi flow

- Calabi energy: $E(g) = \int (K(g) K')^2 dA_g$
- Calabi flow (gradient flow): $\frac{\partial g}{\partial t} = -\nabla E = -2\Delta (K(g) K')g$
- Conformal metric: $g = e^{2\lambda}g^0 \implies E(\lambda)$ convex and $\frac{\partial \lambda}{\partial t} = \Delta(K' K(\lambda))$

Discrete Calabi flow

- Log conformal factor: $\lambda_i : \boldsymbol{v}_i \in V \to \mathbb{R}, \forall i$
- Discrete Calabi flow:

$$\frac{\partial \lambda_i}{\partial t} = \left(\Delta (K' - K) \right)_i$$

- Gradient descent
- Approximate Newton method

$$H = \frac{\partial (\Delta(K - K'))}{\partial \lambda}$$
$$= \Delta^2 + \frac{\partial \Delta}{\partial \lambda} (K - K')$$
$$\approx \Lambda^2$$

- 1. Initialize: $\lambda_i = 0$, $l_{ij} = l_{ij}^0$
- 2. Computing θ_i^{jk} , K_i and Δ using l_{ij}
- 3. If $||K' K|| < \epsilon$, terminate
- 4. Update $\lambda_i \leftarrow \lambda_i + t \left((\Delta \text{ or } \Delta^{-1})(K' K) \right)_i$

5. Update
$$l_{ij} = e^{\frac{\lambda_i + \lambda_j}{2}} l_{ij}^0$$
 and dynamic

triangulation

6. Repeat 2-5

Sphere embedding

Intersection of spheres

$$\begin{cases} \|\mathbf{z} - \mathbf{y}\|^2 = l_1^2 \\ \|\mathbf{z} - \mathbf{x}\|^2 = l_2^2 \\ \|\mathbf{z}\|^2 = r^2 \end{cases}$$

• Intersection of line and sphere

$$-\begin{cases} < \mathbf{z}, \mathbf{y} > = r^2 - \frac{l_1^2}{2} \\ < \mathbf{z}, \mathbf{x} > = r^2 - \frac{l_2^2}{2} \\ \|\mathbf{z}\|^2 = r^2 \end{cases}$$

Conjugate harmonic functions

百天下并才

Conjugate harmonic coordinates

• Solving Laplacian equations:

- For interior vertices
$$\begin{cases} \Delta u = 0 \\ \Delta v = 0 \end{cases}$$

- Boundary control
- Dirichlet boundary condition: - Boundary curve $\gamma: \partial M \to \mathbb{R}^2$ $u \Big|_{\partial M} = \gamma_u, v \Big|_{\partial M} = \gamma_v$
- Neumann boundary condition:
 - Boundary gradients $h: \partial M \to \mathbb{R}^2$ $\partial_M u = h_u, \partial_M v = h_v$

Hamonic, not conformal

Conformal, conjugate gradients

Sawhney, R., & Crane, K. (2017). Boundary first flattening. ACM Transactions on Graphics.

Sawhney, R., & Crane, K. (2017). Boundary first flattening. ACM Transactions on Graphics.

Boundary condition

• Yamabe equations:

$$-\begin{cases} K' = e^{-2\lambda} (K - \Delta_{g} \lambda) \\ \kappa' = e^{-\lambda} (\kappa - \partial_{n}^{M} \lambda) \end{cases}$$

- Integration:
 - $-\begin{cases} \Delta_{g}\lambda dA = K dA K' e^{2\lambda} dA \\ \partial_{n}^{M}\lambda ds = \kappa \kappa' e^{\lambda} ds \end{cases}$
- Discretization:
 - $(\Delta \lambda)_i = K_i K'_i$ $- l'_{ij} = e^{(\lambda_i + \lambda_j)/2} l_{ij} ?$

Boundary optimization

- Geodesic curvature κ'_i
 - Cumulative angle: $\psi_p = \sum_{i=1}^{p-1} \kappa'_i$
 - Unit tangent vector: $T_{ij=\gamma_{p\to p+1}} = (\cos \psi_p , \sin \psi_p)$
- Formulation:
 - Energy: $\sum_{ij\in\partial M} l_{ij}^{-1} \left(l_{ij}' e^{\frac{\lambda_i + \lambda_j}{2}} l_{ij} \right)^2$
 - Constraint: $\sum_{ij\in\partial M} l'_{ij}T_{ij} = \mathbf{0}$
- Boundary curve:
 - $\begin{array}{l} -(u_1, v_1) = (0, 0) \\ -(u_p, v_p) = \sum_{ij \in \gamma_1 \to p} l'_{ij} T_{ij} \end{array}$

Boundary first flattening

0

- For boundary, specify either length (or curvature) of target curve
- Solve Yamabe problem to get complementary data
- Optimize boundary data to get close boundary curve
- Solve conjugate harmonic coordinates

