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Why spectral?

> A different way to look at functions on a domain
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Why spectral?

> Better representations lead to simpler solutions
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Different view or function space

> The same problem, phenomenon or data set, when viewed from a differe
angle, or in a new function space, may better reveal its underlying structure .

to facilitate the solution. Ty
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Different view or function space

> The same problem, phenomenon or data set, when viewed from a different
angle, or in a new function space, may better reveal its underlying structure

to facilitate the solution.

> Solving problems in a different function space using a transform - spectral

transform



Spectral mesh processing

> Use eigen-structure of “well behaved” linear operators for geometry processing
Eigenvectors and eigenvalues Au = Au, u # 0
Diagonalization or eigen-decomposition A = UAUT
Projection into eigen-subspace vy’ = U(k)U(k)"y

DFT-like spectral transform y = UTy



Eigen-decomposition

> Best - symmetric positive definite operator x” Ax > 0, Vx
> Can live with:

semi-positive definite (xTAx > 0, Vx)

non symmetric, as long as eigenvalues are real and positive e.g.

L = DW, where W is SPD and D is diagonal

> Beware of : non-square operators, complex eigenvalues, negative eigenvalues



Eigen-structure

eigen-decomposition
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Reconstruction and compression

> Reconstruction using k leading coefficients

k
y®) = z yie
1=1

> A form of spectral compression with info loss given by

: zn
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Plot of transform coefficients

> Fairly fast decay as eigenvalue increases
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Smoothing or compression
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Spectral : intrinsic view

> Spectral approach takes the intrinsic view
Intrinsic mesh information captured via a linear mesh operator

Eigen-structures of the operator present the intrinsic geometric information in an organized

manner

Rarely need all eigen-structures, dominant ones often suffice



Application

> Shape retrieval
> Functional maps
> Parameterization
> Simplification

> Applications in machine learning



Shape Retrieval

3D Repository Matches




Shape Retrieval

3D Repository descriptors Query descriptor Closest matches




Pose invariant shape descriptor

> “Similar” descriptors for shape in different poses

Still the same cat




Spectral shape descriptors

> Use pose invariant operators
Matrix of geodesic distances
Laplace-Beltrami operator
Heat/wave kernel
> Derive descriptors from eigen-structure
Eigenvalues
Distance based descriptors on spectral embedding

Heat/wave kernel signature



Geodesic distances matrix

> Operator: Matrix of Gaussian-filtered pair-wise geodesic

dist(pi,pj)z)
202

distances 4;; = exp(—

> Only take k << n samples

> Descriptor: eigenvalues of matrix

[Jian and Zhang 06]




Limitations

> Geodesic distances sensitive to

“shortcuts”

small topological holes

Short circuit




Global point signatures [Rustamov 2007]

Given a point p on the surface, define

1 1
. ¢;(p) value of the eigenfunction ¢; at the point p

. A;’s are the Laplace-Beltrami eigenvalues



Property

> |f surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span L*(M); if GPS(p) = GPS(q), then all

functions on the manifold M would be equal at p and q.
> GPS is isometry-invariant.
Proof: Comes from the Laplacian

1l

Af = diviESE=— = G

0; (/1917 9, 1)



GPS-based shape retrieval

> Use histogram of distances in the GPS embeddings

Invariance properties reflected in GPS
embeddings

Less sensitive to topology changes by using
only low-frequency eigenfunctions

Sign flips and eigenvector : switching are

NYES




Multidimensional scaling on GPS

> Non-linear embedding into 2D that “almost” reproduces GPS distances
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Use for shape matching?

> Nope. Embedding sensitive to eigenvector “switching”

> Eigenvectors are not unlque
> Only defined up to sign

> |f repeating eigenvalues — any vector in subspace is eigenvector



Heat equation on a manifold

> Heat equation :Z—I; = —Au = u(x,t) = Yo a” exp(—A,t) ¢, (x)

S 2j=0a”</)n(x) e (D O = f 1o (¥) b () dy

u(x,t) = Z:;O j uo(¥)Pn (y)dy exp(—=A,t) ¢ (x) = j [z exp(—4,t) ¢n(x)¢n(}) uo(y)dy

kt(xl y)



Heat equation on a manifold

> Heat kernel k;(x,y): R* X M X M - R

o) = kat<x, My, 0)dy

k:(x,y) amount of heat transferred

from y to x in time t.




Heat equation on a manifold

> Heat kernel kt(x; }7) = exp(_t/ln)qbn(x)qbn(y)

k:(x,y) = Prob. of
reaching y from x
after t random steps

k:(x,x) = Heat
Kernel Signature
[Sun et al. 09]




Properties

> Good properties: ok aled B3
Isometry-invariant

Not subject to switching

Easy to compute

Multiscale, related to curvature at small scales



Properties

sealed HKS

> Good properties:

> Bad properties:

Issues remain with repeated

eigenvalues

Theoretical guarantees require

(near-)isometry



Heat kernel applied

> Diffusion wavelets [Coifman and Maggioni 06]
> Segmentation [deGoes et al. 08]
> Heat kernel signature [Sun et al. 09]

> Heat kernel matching [Ovsjanikov et al. 10]




Wave kernel signature

> The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis [Aubry,
Schlickewei, and Cremers; ICCV Workshops 2012]

1 T

T _ 2
WKS(E,z) = lim - Vg (z, )| dt = Zc,f)n

T — 00
T 0 n=>0

Initial energy
distribution

Average probability over
time that particle is at x.




Wave kernel signature

WKS(F,z) = lim -—/ Ve (x,t)|? dt = Zqﬁn ) fe(An

T—oo T




Properties

> Good properties:

[Similar to HKS]

Stable under some non-isometric deformation
> Bad properties:

[Similar to HKS]

Can filter out large-scale features
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Functional maps

> Starting from a Regular Map

¢: lion - cat




Functional maps

-4 T

i
-56.27703

> Starting from a Regular Map
¢: lion — cat
> Attribute Transfer via Pull-Back

T<l> -cat - lion

5 25 0 2.5 5

-6.77003

6.78771




Functional maps

» Ty is a linear operator (Ty : L*(cat) — L?(lion))




Functional maps

> Dual of a point-to-point map
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Exploit linearity

> Bases of a function space

' operator! y

¢




Exploit linearity




Exploit linearity




Functional map matrix




Functional map representation

Definition
For a fixed choice of basis functions {¢M} and {¢"'}, and a
bijection T : M — N, define its functional representation

as a matrix C, s.t. for all f =5, a;¢0M, if Te(f) = >, bipV
then:

b= Ca

If {pM} and {¢"} are both orthonormal w.r.t. some inner
product, then

Ci = (Tr(¢V),8Y) .




Estimating the mapping matrix

Suppose we don’'t know C. However, we expect a pair of
functions r:. /7 — Rand g: N — Rto correspond. Then, C

must be s.t.
Ca~Db

where =5 a;¢pM, g=>.b;pN

Given enough {a;, b;} pairs in correspondence, we can
recover C through a linear least squares system.



Commutativity regularization

In addition, we can phrase an operator commutativity
constraint: given two operators s, : 7(M,R) —» F(M,R) and
S F(N,R) — F(N,R).

Thus: (S, = S,C or ||CS, — S,C|| should be minimized

Note: this is a linear constrainton C. S, and S, could

be symmetry operators or e.g. Laplace-Beltrami or
Heat operators.




Operator commutativity
—— S
CA1 = QA0

£
Differentiate and then transport

Transport and then differentiate




Property

> Lemma 1 : the mapping is isometric, if and only if the functionalmap matrix commutes with the

Laplacian: CA; = A,C

> Lemma 2 : the mapping is locally volume preserving, if and onlyif the functional map matrix is

orthonormal: CTC =1

> Lemma 3 : if the mapping is conformal if and only if: CTA;C = A,



Sparsity in a localized basis

Sum of Euclidean
norms of cols
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Sparse Modeling of Intrinsic Correspondences (Pokrass, Bronstein2, Sprechmann, Sapiro)




General optimization for maps

minc  ||CD; — Dsl|3
[+al|CAL — AsCllgy,]
+6(|Cll2,1
such that [C'C = I

Functional Maps: A Flexible Representation of Maps Between Shapes

Maks Ovsjanikov! Mirela Ben-Chen? Justin Solomon? Adrian Butscher? Leonidas Guibas?
t LIX, Ecole Polytechnique ¥ Stanford University

A A4 LA
M| n&pﬁ& !f 1,‘ 3 Start here

Figure 1: Horse algebra: the functional representation and map inference algorithm allow us to go beyond point-to-point maps. The source
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From Functional to Point-to-Point Maps

#Can try transporting delta functions individually --
expensive

Dual




Application: Segmentation Transfer




Parameterization

> Laplacian matrix L; ; = _Zj;til‘i,j

~ First eigenvalue 2; = 0 and corresponding eigenvector (1,1, ..., 1)

> The second eigenvector — field vector



Field vector

Streaming meshes Streaming meshes
[Isenburg & Lindstrom] [Isenburg & Lindstrom]

1D parameterization



2D conformal parameterization

Discrete conformal mapping:

Minimize
[L, Petitjean, Ray, Maillot 2002]
[Desbrun, Alliez 2002]




Sensitive to pinned vertices




Relationship of LSCM

1 1
Ersery(u,v) = EfIiVu — Vv|%dA = EJ(iVu, iVu) + (Vv, Vv) — 2(iVu, Vv)dA

it 1
= Ef(Vu, Vu) + (Vv, Vv) — 2Vu X VvdA = Ep(u, v) — E;(u, v) = ExTLx — xTAx

[LC=L—A]




Spectral conformal parameterization

[Muellen, Tong, Alliez, Desbrun 2008]

Use Fiedler vector,
i.e. the minimizer of R(A,x) = xt A x / x* x
that is orthogonal to the trivial constant solution

Implementation:
(1) assemble the matrix of the discrete conformal parameterization
(2) compute its eigenvector associated with the first non-zero eigenvalue

See http://alice.loria.fr/WIKI Graphite tutorials — Manifold Harmonics




Simplification

> Homework 6

Ground truth Uniform Garland & Heckbert 1997
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Applications in machine learning

> Semi-supervised learning using Gaussian fields and harmonic functions [Zhu,

Ghahramani, & Lafferty 2003]




Applications in machine learning

> Given m labeled points (x1, y1), ..., (X, ¥m); v; € {0,1}

n unlabeled points X, 1, ..., Xpan, M KN

4 ] 5
minzzij wi; (f () — f(i))z,

s.t.f(k) fixed, Vk <m
\& o7

Dirichlet energy — Linear system of equations (Poisson)




Method

> Step 1 : Build k-NN graph
> Step 2 : Compute p smallest Laplacian eigenvectors

> Step 3 : Solve semi-supervised problem in subspace




Diffusion maps [Coifman and Lafon 2006]

Embedding from first k eigenvalues/vectors:

Uy (z) := (AM1¥1(2), Ag¥2(2), - - ., Apte())

Roughly:

'_A 5




Graph convolutional networks

Spectral Networks and Deep Locally Connected
Networks on Graphs

Convolution theorem for functions on R™:
— -1
f = g — "'F [F ’ G] Joan Bruna Wojciech Zaremba

New York University New York University
bruna@cims.nyu.edu woj.zarembal@gmail.com

Arthur Szlam Yann LeCun
The City College of New York New York University
aszlam@ccny.cuny.edu yann@cs.nyu.edu

Abstract

Convolutional Neural Networks are extremely efficient architectures in image and

audio recognition tasks, thanks to their ability to exploit the local translational

invariance of signal classes over their domain. In this paper we consider possi-

V t . . t f h L | . ble genpralizations of CNNS to signals deﬁped on more general domains wit_hout
contains e |gE nvectors o grap ap aclan the action of a translation group. In particular, we propose two constructions,
one based upon a hierarchical clustering of the domain, and another based on the

spectrum of the graph Laplacian. We show through experiments that for low-

dimensional graphs it is possible to learn convolutional layers with a number of

parameters independent of the input size, resulting in efficient deep architectures.




