
Spectral Mesh Processing
USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn

https://qingfang1208.github.io/

mailto:fq1208@mail.ustc.edu.cn
https://qingfang1208.github.io/


Why spectral?

➢ A different way to look at functions on a domain
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Different view or function space

➢ The same problem, phenomenon or data set, when viewed from a different 

angle, or in a new function space, may better reveal its underlying structure 

to facilitate the solution.



Different view or function space

➢ The same problem, phenomenon or data set, when viewed from a different 

angle, or in a new function space, may better reveal its underlying structure 

to facilitate the solution.

➢ Solving problems in a different function space using a transform - spectral 

transform



Spectral mesh processing

➢ Use eigen‐structure of “well behaved” linear operators for geometry processing

• Eigenvectors and eigenvalues  𝐴𝑢 = 𝜆𝑢, 𝑢 ≠ 0

• Diagonalization or eigen‐decomposition  𝐴 = 𝑈Λ𝑈𝑇

• Projection into eigen‐subspace  𝑦’ = 𝑈 𝑘 𝑈 𝑘 𝑇𝑦

• DFT‐like spectral transform  ො𝑦 = 𝑈𝑇𝑦



Eigen‐decomposition

➢ Best - symmetric positive definite operator 𝑥𝑇𝐴𝑥 > 0, ∀𝑥

➢ Can live with: 

• semi‐positive definite (𝑥𝑇𝐴𝑥 ≥ 0, ∀𝑥)

• non symmetric, as long as eigenvalues are real and positive e.g. 

𝐿 = 𝐷𝑊, where 𝑊 is SPD and 𝐷 is diagonal

➢ Beware of : non‐square operators, complex eigenvalues, negative eigenvalues



Eigen‐structure



Reconstruction and compression

➢ Reconstruction using 𝑘 leading coefficients

𝑦(𝑘) =෍
𝑖=1

𝑘

ො𝑦𝑖𝑒𝑖

➢ A form of spectral compression with info loss given by 
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Plot of transform coefficients

➢ Fairly fast decay as eigenvalue increases



Smoothing or compression



Spectral : intrinsic view

➢ Spectral approach takes the intrinsic view

• Intrinsic mesh information captured via a linear mesh operator

• Eigen-structures of the operator present the intrinsic geometric information in an organized 

manner

• Rarely need all eigen-structures, dominant ones often suffice



Application

➢ Shape retrieval

➢ Functional maps

➢ Parameterization

➢ Simplification

➢ Applications in machine learning



Shape Retrieval



Shape Retrieval



Pose invariant shape descriptor

➢ “Similar” descriptors for shape in different poses



Spectral shape descriptors

➢ Use pose invariant operators

• Matrix of geodesic distances

• Laplace‐Beltrami operator

• Heat/wave kernel

➢ Derive descriptors from eigen‐structure

• Eigenvalues

• Distance based descriptors on spectral embedding

• Heat/wave kernel signature



Geodesic distances matrix

➢ Operator: Matrix of Gaussian‐filtered pair‐wise geodesic 

distances 𝐴𝑖𝑗 = exp(−
dist 𝑝𝑖,𝑝𝑗

2

2𝜎2
)

➢ Only take k << n samples

➢ Descriptor: eigenvalues of matrix



Limitations

➢ Geodesic distances sensitive to 

“shortcuts” 

small topological holes



Global point signatures [Rustamov 2007]

Given a point 𝑝 on the surface, define

𝐺𝑃𝑆 𝑝 = (
1

𝜆1
𝜙1 𝑝 ,

1

𝜆2
𝜙2 𝑝 ,… )

• 𝜙𝑖 𝑝 value of the eigenfunction 𝜙𝑖 at the point 𝑝

• 𝜆𝑖’s are the Laplace‐Beltrami eigenvalues



Property

➢ If surface does not self-intersect, neither does the GPS embedding.

Proof: Laplacian eigenfunctions span 𝐿2(ℳ); if 𝐺𝑃𝑆(𝑝) = 𝐺𝑃𝑆(𝑞), then all 

functions on the manifold ℳ would be equal at 𝑝 and 𝑞.

➢ GPS is isometry-invariant.

Proof: Comes from the Laplacian

Δ𝑓 = div ∇𝑓 ⟹ Δ𝑓 =
1

𝑔
𝜕𝑖( 𝑔 𝑔𝑖𝑗𝜕𝑗𝑓)



GPS-based shape retrieval

➢ Use histogram of distances in the GPS embeddings

• Invariance properties reflected in GPS 

embeddings

• Less sensitive to topology changes by using 

only low‐frequency eigenfunctions

• Sign flips and eigenvector : switching are 

issues



Multidimensional scaling on GPS

➢ Non-linear embedding into 2D that “almost” reproduces GPS distances



Use for shape matching?

➢ Nope. Embedding sensitive to eigenvector “switching”

➢ Eigenvectors are not unique

➢ Only defined up to sign

➢ If repeating eigenvalues – any vector in subspace is eigenvector



Heat equation on a manifold

➢ Heat equation :
𝜕𝑢

𝜕𝑡
= −Δ𝑢 ⟹ 𝑢(𝑥, 𝑡) = σ𝑛=0

∞ 𝑎𝑛 exp −𝜆𝑛𝑡 𝜙𝑛(𝑥)

𝑡 = 0, 𝑢 𝑥, 0 =෍
𝑛=0

∞

𝑎𝑛𝜙𝑛(𝑥) ⟹ 𝑎𝑛 = 𝑢 ⋅, 0 , 𝜙𝑛 ⋅ = න𝑢0 𝑦 𝜙𝑛 𝑦 𝑑𝑦

𝑢 𝑥, 𝑡 =෍
𝑛=0

∞

න𝑢0 𝑦 𝜙𝑛 𝑦 𝑑𝑦 exp −𝜆𝑛𝑡 𝜙𝑛 𝑥 = න෍
𝑛
exp −𝜆𝑛𝑡 𝜙𝑛 𝑥 𝜙𝑛 𝑦 𝑢0 𝑦 𝑑𝑦

𝑘𝑡 𝑥, 𝑦



Heat equation on a manifold

➢ Heat kernel 𝑘𝑡 𝑥, 𝑦 : ℝ+ ×ℳ ×ℳ → ℝ

𝑢 𝑥, 𝑡 = න
ℳ

𝑘𝑡 𝑥, 𝑦 𝑢 𝑦, 0 𝑑𝑦

𝑘𝑡 𝑥, 𝑦 amount of heat transferred 

from 𝑦 to 𝑥 in time 𝑡.



Heat equation on a manifold

➢ Heat kernel 𝑘𝑡 𝑥, 𝑦 = σ𝑛 exp −𝑡𝜆𝑛 𝜙𝑛 𝑥 𝜙𝑛(𝑦)

𝑘𝑡 𝑥, 𝑦 = Prob. of 
reaching 𝑦 from 𝑥

after t random steps

𝑘𝑡 𝑥, 𝑥 = Heat 
Kernel Signature

[Sun et al. 09]



Properties

➢ Good properties:

• Isometry-invariant

• Not subject to switching

• Easy to compute

• Multiscale, related to curvature at small scales



Properties

➢ Good properties:

➢ Bad properties:

• Issues remain with repeated 

eigenvalues

• Theoretical guarantees require 

(near-)isometry



Heat kernel applied

➢ Diffusion wavelets [Coifman and Maggioni 06]

➢ Segmentation [deGoes et al. 08]

➢ Heat kernel signature [Sun et al. 09]

➢ Heat kernel matching [Ovsjanikov et al. 10]



Wave kernel signature

➢ The Wave Kernel Signature: A Quantum Mechanical Approach to Shape Analysis [Aubry, 

Schlickewei, and Cremers; ICCV Workshops 2012]



Wave kernel signature



Properties

➢ Good properties:

• [Similar to HKS]

• Stable under some non-isometric deformation

➢ Bad properties:

• [Similar to HKS]

• Can filter out large-scale features



Functional maps

➢ Starting from a Regular Map 

𝜙: 𝑙𝑖𝑜𝑛 → 𝑐𝑎𝑡



Functional maps

➢ Starting from a Regular Map

𝜙: 𝑙𝑖𝑜𝑛 → 𝑐𝑎𝑡

➢ Attribute Transfer via Pull-Back 

𝑇𝜙 : 𝑐𝑎𝑡 → 𝑙𝑖𝑜𝑛



Functional maps

➢ 𝑇𝜙 is a linear operator (𝑇𝜙 : 𝐿
2 𝑐𝑎𝑡 → 𝐿2(𝑙𝑖𝑜𝑛))



Functional maps

➢ Dual of a point-to-point map

Identify function 

𝛿𝑝 ∈ 𝐿2 𝑐𝑎𝑡 → 𝛿𝑞 ∈ L2(𝑙𝑖𝑜𝑛)

⟺ 𝑞 ∈ 𝑙𝑖𝑜𝑛 → 𝑝 ∈ 𝑐𝑎𝑡



Exploit linearity

➢ Bases of a function space



Exploit linearity



Exploit linearity



Functional map matrix



Functional map representation



Estimating the mapping matrix



Commutativity regularization



Operator commutativity



Property

➢ Lemma 1 : the mapping is isometric, if and only if the functionalmap matrix commutes with the 

Laplacian: 𝐶Δ1 = Δ2𝐶

➢ Lemma 2 : the mapping is locally volume preserving, if and onlyif the functional map matrix is 

orthonormal: 𝐶𝑇𝐶 = 𝐼

➢ Lemma 3 : if the mapping is conformal if and only if: 𝐶𝑇Δ1𝐶 = Δ2



Sparsity in a localized basis



General optimization for maps



From Functional to Point-to-Point Maps



Application: Segmentation Transfer



Parameterization

➢ Laplacian matrix 𝐿𝑖,𝑖 = −σ𝑗≠𝑖 𝐿𝑖,𝑗

➢ First eigenvalue 𝜆1 = 0 and corresponding eigenvector 1,1,… , 1 𝑇

➢ The second eigenvector – field vector  



Field vector 

1D parameterization



2D conformal parameterization



Sensitive to pinned vertices



Relationship of LSCM

𝐸𝐿𝑆𝐶𝑀 𝑢, 𝑣 =
1

2
න 𝑖∇𝑢 − ∇𝑣 2𝑑𝐴 =

1

2
න 𝑖∇𝑢, 𝑖∇𝑢 + ∇𝑣, ∇𝑣 − 2 𝑖∇𝑢, ∇𝑣 𝑑𝐴

=
1

2
න ∇𝑢, ∇𝑢 + ∇𝑣, ∇𝑣 − 2∇𝑢 × ∇𝑣𝑑𝐴 = 𝐸𝐷 𝑢, 𝑣 − 𝐸𝐴 𝑢, 𝑣 =

1

2
𝑥𝑇𝐿𝑥 − 𝑥𝑇𝐴𝑥

𝐿𝐶 = 𝐿 − 𝐴



Spectral conformal parameterization 



Simplification

➢ Homework 6 



Applications in machine learning

➢ Semi-supervised learning using Gaussian fields and harmonic functions [Zhu, 

Ghahramani, & Lafferty 2003]



Applications in machine learning

➢ Given 𝑚 labeled points 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 ; 𝑦𝑖 ∈ {0,1}

𝑛 unlabeled points 𝑥𝑚+1, … , 𝑥𝑚+𝑛, 𝑚 ≪ 𝑛

min
1

2
෍

𝑖𝑗
𝑤𝑖𝑗 𝑓 𝑖 − 𝑓 𝑗

2
,

𝑠. 𝑡. 𝑓 𝑘 fixed, ∀ 𝑘 ≤ 𝑚

Dirichlet energy → Linear system of equations (Poisson)



Method

➢ Step 1 : Build 𝑘-NN graph

➢ Step 2 : Compute 𝑝 smallest Laplacian eigenvectors

➢ Step 3 : Solve semi-supervised problem in subspace



Diffusion maps [Coifman and Lafon 2006]



Graph convolutional networks


