Mesh Parameterization III

USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn

https://qingfang1208.github.io/

Applications

- > Atlas generation
- > Peeling art
- > Meshing/remeshing
- > Inter-surface mappings

Texture mapping

 Texture mapping is a method for defining high frequency detail, surface texture, or color information on a computer-generated graphic or 3D model

Atlas

Requires defining a mapping from the model space to the texture space.

Model Space

Texture Space

Generation process

Mesh cutting

Parameterization

Packing

Mesh Cutting

> Low distortion

> As short as possible length

Seams introduce filtering artifacts

High-resolution texture

Parameterizations

> Bijective and low isometric distortion

Packing - high packing efficiency

Packing - high packing efficiency

> Mesh cutting

> Parameterization

Packing

Applications

- > Signal storage
- Geometric processing
 Gradient-domain processing
 within a Texture Atlas

Mesh cutting

Segmentation

Points \rightarrow Paths

Segmentation

> Goal: mesh segmentation into compact charts with minimal distortion

Proxy

- > Developable surfaces of constant slope
- Constant angle between surface normal and axis
- > Proxy: $\langle N_c, \theta_c \rangle$

Fitting error

- > Measures how well triangle fits a chart $\mathcal{F}(C, t) = (N_c^T n_t \cos \theta_c)^2$
- > Compactness function : $C(C, t) = \frac{\pi D(S_c, t)^2}{A_c}$
 - S_c is the seed triangle of the given chart
 - $D(S_c, t)$ is the length of the shortest path (inside the chart) between two triangles
 - A_c is the area of chart C
- > Cost energy : $E(C,t) = A_t \mathcal{F}(C,t)^{\alpha} \mathcal{C}(C,t)^{\beta}$

Segmentation method

- > Lloyd algorithm
 - 1. Select random triangles to act as seeds
 - 2. Grow charts around seeds using a greedy approach
 - 3. Find new proxy for each chart
 - 4. Repeat from step 2 until convergence
- K-means
- > CVT

Distortion points - iterative method

- Parameterize the mesh to the plane.
- > Add the point of greatest isometric distortion.

Packing efficiency (PE)

Maximizing atlas packing efficiency is NP-hard!

Other requirements

- Low distortion
- Consistent orientation
- > Overlap free
- > Low boundary length

Atlas refinement

Input

No overlap High PE

Box Cutter

Limper, M., Vining, N., & Sheffer, A. (2018). Box cutter: atlas refinement for efficient packing via void elimination. ACM Trans. Graph., 37(4), 153.

PolyAtlas

Liu, H. Y., Fu, X. M., Ye, C., Chai, S., & Liu, L. (2019). Atlas refinement with bounded packing efficiency. ACM Transactions on Graphics (TOG), 38(4), 1-13.

Irregular shapes Hard to achieve high PE

Rectangles Simple to achieve high PE

Axis-aligned structure

Axis-aligned structure

Rectangle decomposition

High PE (87.6%)!

General Cases

Applications

- > Atlas generation
- Peeling art
- > Meshing/remeshing
- > Inter-surface mappings

Computational Peeling Art Design

ACM SIGGRAPH 2019

Hao Liu* Xiao-Teng Zhang* Xiao-Ming Fu Zhi-Chao Dong Ligang Liu University of Science and Technology of China

(This video contains voiceover.)

Peeling art

Problem

Problem

> Cut generation

Shape similarity

Inverse problem

Inverse problem

 \succ Low isometric distortion for ϕ

 $\min E_{iso}(S^m, S) + wE_{shr}(R)$

> Area of remain regions $\rightarrow 0$

> ARAP distortion metric [Liu et al. 2008]

$$E_{iso}(S^{m},S) = \sum_{ijk\in S} A_{ijk} \|J_{ijk} - R_{ijk}\|_{F}^{2}, \qquad R_{ijk}R_{ijk}^{T} = I$$

> Area shrink energy

$$E_{shr}(R) = \sum_{ijk\in R} A_{ijk} \left\| J_{ijk} - B_{ijk} \right\|_{F}^{2}, \quad rank(B_{ijk}) = 1$$

Different shrink energy

Different initialization

Suitable input

Different initialization

Suitable input

> Unsuitable input

Iterative interaction

Real peeling

Computational Peeling Art Design

ACM SIGGRAPH 2019

Hao Liu* Xiao-Teng Zhang* Xiao-Ming Fu Zhi-Chao Dong Ligang Liu University of Science and Technology of China

(This video contains voiceover.)

Applications

- > Atlas generation
- > Peeling art
- > Meshing/remeshing
- > Inter-surface mappings

Meshing

Remeshing

- Given a 3D mesh, compute another mesh, whose elements satisfy some quality requirements, while approximating the input acceptably.
- Mesh quality : sampling density, regularity, size, orientation, alignment,
 shape of the mesh elements, non-topological issues (mesh repair)
- Different applications imply different quality criteria and requirements.

Local structure

- > Element shape
 - Isometric
 - Anisotropic

Local structure

- > Element shape
- > Element density
 - Uniform
 - Adaptive

Local structure

- > Element shape
- > Element density
- > Element alignment
- Anisotropic orientation

Global structure

- > Irregular
- Semiregular regular subdivision of a coarse initial mesh
- > Highly regular most vertices are regular
- Regular all vertices are regular

Global structure

Irregular

Semiregular

Regular

Parameterization-based remeshing

> Low distortion

- Keeping shapes from the parameter domains
- > Cuts
 - Parameterization-based method requires cut paths
 - Visit at least twice

Isotropic triangular meshing

Projection onto the input:

- > Time-consuming
- May be incorrect for smallscale features

By nearly isometric parameterization

Remeshing on the plane, no projection

Isotropic remeshing

- Cut the input surface to be disk topology
- Compute parameterizations
- Remesh parameterized domain
- > Interpolation on the input

Anisotropic remeshing

- > Eigen-decomposition $M(x) = U(x)\Lambda(x)U^T(x)$
- > Transformation $\phi = \Lambda^{1/2}(x)U^T(x)$
- > Anisotropic remeshing all edge lengths with metric are as equal as possible

High-dim isometric embedding

For an arbitrary metric field M(x) defined on the surface or volume $\Omega \subset \mathbb{R}^m$, there exists a high-d space \mathbb{R}^n (m < n) in which Ω can be embedded with Euclidean

metric as $\overline{\Omega} \subset \mathbb{R}^n$.

Computing high-dim embedding

local-global solver:

 $E_{embedding} + \mu E_{smoothing}$

 $E_{embedding}$: measure the rigidity, like ARAP

 $E_{smoothing}$: measure the smoothness of the embedding

A 3D embedding from a 2D domain with an anisotropic metric

Mesh types

Triangle

Quad

Hex

Applications

- > Atlas generation
- > Peeling art
- > Meshing/remeshing
- Inter-surface mappings

Inter-surface mapping

Cross parameterization

 M_{s}

> A one-to-one mapping f between two surfaces M_s and M_t

 M_t

Compatible meshes

> Meshes with identical connectivity (M_s and \widehat{M}_t)

 $M_t \cong \widehat{M}_t = f(M_s)$

 M_{s}

Applications

> Morphing

 \triangleright

...

Attribute transfer

Methods

- > Input: Two (*n*) models and some corresponding landmarks
- > Output: Bijection and low distortion

Methods

- Construct a common base domain
 - Topologically identical triangular layouts of the two meshes.
- Compute a low distortion cross-parameterization
 - Each patch is mapped to the corresponding base mesh triangle.
- Compatibly remesh the input models using the parameterizations

One common base domain

 $, f = f_t^{-1} \circ f_{st} \circ f_s$

Parameterization domain

- > Cutting to disk topology.
- > Computing the joint flattenings ϕ , ψ .
- Bijection Lifting

Cutting paths

- > Bijective correspondence
 - Shortest path
 - Minimal spanning tree

Computing ϕ, ψ

Constraint

- Common boundary condition
- Locally injective

Bijection Lifting

> Bijective parameterizations

Bijection Lifting

> Only locally injective constrains

Results

Disadvantages

> Cut-dependent

