Mesh Parameterization III

 $\frac{1}{10}$
 $\frac{1}{10}$
 $\frac{1}{10}$
 $\frac{1}{10}$

USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn

<https://qingfang1208.github.io/>

Applications

- ➢ Atlas generation
- ➢ Peeling art
- ➢ Meshing/remeshing
- ➢ Inter-surface mappings

Texture mapping

➢ Texture mapping is a method for defining high frequency detail, surface texture, or color information on a computer-generated graphic or 3D model

Atlas

➢ Requires defining a mapping from the model space to the texture space.

Model Space

Texture Space

Generation process

Mesh cutting **Parameterization** Packing

Mesh Cutting

➢ Low distortion

➢ As short as possible length

Seams introduce filtering artifacts

High-resolution texture

Parameterizations

➢ Bijective and low isometric distortion

Packing - high packing efficiency

Packing - high packing efficiency

➢ Mesh cutting

➢ Parameterization

➢ Packing

Applications

➢ Signal storage

➢ Geometric processing Gradient-domain processing within a Texture Atlas

Mesh cutting

Segmentation Points → Paths

Segmentation

➢ Goal: mesh segmentation into compact charts with minimal distortion

Proxy

- ➢ Developable surfaces of constant slope
- ➢ Constant angle between surface normal and axis
- \triangleright Proxy: $\langle N_c, \theta_c \rangle$

Fitting error

- > Measures how well triangle fits a chart $\mathcal{F}(\mathcal{C}, t) = (N_c^T n_t \cos \theta_c)^2$
- \triangleright Compactness function : $\mathcal{C}(\mathcal{C},t) =$ $\pi D(S_c,t)^2$ $A_{\mathcal{C}}$
	- \cdot S_c is the seed triangle of the given chart
	- $\cdot \quad D(S_c,t)$ is the length of the shortest path (inside the chart) between two triangles
	- \cdot $\,$ A_{c} is the area of chart C
- $\triangleright \;\; {\sf Cost\,energy} : E({\cal C},t) = A_t {\cal F}({\cal C},t)^\alpha {\cal C}({\cal C},t)^\beta$

Segmentation method

- ➢ Lloyd algorithm
	- 1. Select random triangles to act as seeds
	- 2. Grow charts around seeds using a greedy approach
	- 3. Find new proxy for each chart
	- 4. Repeat from step 2 until convergence
- ➢ K-means
- ➢ CVT

Distortion points - iterative method

- ➢ Parameterize the mesh to the plane.
- ➢ Add the point of greatest isometric distortion.

Packing efficiency (PE)

Maximizing atlas packing efficiency is NP-hard!

Other requirements

- ➢ Low distortion
- ➢ Consistent orientation
- ➢ Overlap free
- ➢ Low boundary length

Atlas refinement

High PE

Box Cutter

➢ Limper, M., Vining, N., & Sheffer, A. (2018). Box cutter: atlas refinement for efficient packing via void elimination. ACM Trans. Graph., 37(4), 153.

PolyAtlas

➢ Liu, H. Y., Fu, X. M., Ye, C., Chai, S., & Liu, L. (2019). Atlas refinement with bounded packing efficiency. ACM Transactions on Graphics (TOG), 38(4), 1-13.

Irregular shapes Hard to achieve high PE

Rectangles Simple to achieve high PE

Axis-aligned structure

Axis-aligned structure Rectangle decomposition High PE (87.6%)!

General Cases

Applications

- ➢ Atlas generation
- ➢ Peeling art
- ➢ Meshing/remeshing
- ➢ Inter-surface mappings

Computational Peeling Art Design

ACM SIGGRAPH 2019

Hao Liu^{*} Xiao-Teng Zhang^{*} Xiao-Ming Fu Zhi-Chao Dong Ligang Liu University of Science and Technology of China

(This video contains voiceover.)

Peeling art

Problem

Problem

➢ Cut generation

➢ Shape similarity

Inverse problem

Inverse problem

 \triangleright Low isometric distortion for ϕ

 $\min E_{iso}(S^m, S) + w E_{shr}(R)$

 \triangleright Area of remain regions \rightarrow 0

➢ ARAP distortion metric [Liu et al. 2008]

$$
E_{iso}(S^{m}, S) = \sum_{ijk \in S} A_{ijk} ||J_{ijk} - R_{ijk}||_{F}^{2}, \qquad R_{ijk} R_{ijk}^{T} = I
$$

➢ Area shrink energy

$$
E_{shr}(R) = \sum_{ijk \in R} A_{ijk} ||J_{ijk} - B_{ijk}||^2_F, \qquad rank(B_{ijk}) = 1
$$

Different shrink energy

Different initialization

➢ Suitable input

Different initialization

➢ Suitable input

➢ Unsuitable input

Iterative interaction

Real peeling

Computational Peeling Art Design

ACM SIGGRAPH 2019

Hao Liu^{*} Xiao-Teng Zhang^{*} Xiao-Ming Fu Zhi-Chao Dong Ligang Liu University of Science and Technology of China

(This video contains voiceover.)

Applications

- ➢ Atlas generation
- ➢ Peeling art
- ➢ Meshing/remeshing
- ➢ Inter-surface mappings

Meshing

Remeshing

- ➢ Given a 3D mesh, compute another mesh, whose elements satisfy some quality requirements, while approximating the input acceptably.
- ➢ Mesh quality : sampling density, regularity, size, orientation, alignment, shape of the mesh elements, non-topological issues (mesh repair)
- ➢ Different applications imply different quality criteria and requirements.

Local structure

- ➢ Element shape
	- Isometric
	- Anisotropic

Local structure

- ➢ Element shape
- ➢ Element density
	- Uniform
	- Adaptive

Local structure

- ➢ Element shape
- ➢ Element density
- ➢ Element alignment
- ➢ Anisotropic orientation

Global structure

- ➢ Irregular
- ➢ Semiregular regular subdivision of a coarse initial mesh
- ➢ Highly regular most vertices are regular
- ➢ Regular all vertices are regular

Global structure

Irregular Semiregular Regular

Parameterization-based remeshing

➢ Low distortion

- Keeping shapes from the parameter domains
- ➢ Cuts
	- Parameterization-based method requires cut paths
	- Visit at least twice

Isotropic triangular meshing

Projection onto the input:

- ➢ Time-consuming
- ➢ May be incorrect for smallscale features

By nearly isometric parameterization

➢ Remeshing on the plane, no projection

Isotropic remeshing

- \triangleright Cut the input surface to be disk topology
- ➢ Compute parameterizations

Input

- ➢ Remesh parameterized domain
- \triangleright Interpolation on the input

Anisotropic remeshing

- \triangleright Eigen-decomposition $M(x) = U(x)\Lambda(x)U^T(x)$
- > Transformation $\phi = \Lambda^{1/2}(x)U^T(x)$
- ➢ Anisotropic remeshing all edge lengths with metric are as equal as possible

High-dim isometric embedding

► For an arbitrary metric field $M(x)$ defined on the surface or volume $\Omega \subset \mathbb{R}^m$, there exists a high-d space \mathbb{R}^n $(m < n)$ in which Ω can be embedded with Euclidean

metric as $\overline{\Omega} \subset \mathbb{R}^n$.

Computing high-dim embedding

 \int local-global solver: $E_{embedding} + \mu E_{smoothing}$

 $\sqrt{E_{embedding}}$: measure the rigidity, like ARAP

 $E_{\text{s}modthing}$: measure the smoothness of the embedding

A 3D embedding from a 2D domain with an anisotropic metric

Mesh types

Triangle Cuad Quad Tet Hex

Applications

- ➢ Atlas generation
- ➢ Peeling art
- ➢ Meshing/remeshing
- ➢ Inter-surface mappings

Inter-surface mapping

➢ Cross parameterization

 \triangleright A one-to-one mapping f between two surfaces M_s and M_t^{-1}

Compatible meshes

\triangleright Meshes with identical connectivity ($M_{_S}$ and $\widehat{M}_t)$

 M_s \widehat{M}_t $M_t \cong \widehat{M}_t = f(M_s)$

Applications

➢ Morphing

➢ …

➢ Attribute transfer

Methods

- \triangleright Input: Two (n) models and some corresponding landmarks
- ➢ Output: Bijection and low distortion

Methods

- ➢ Construct a common base domain
	- Topologically identical triangular layouts of the two meshes.
- ➢ Compute a low distortion cross-parameterization
	- Each patch is mapped to the corresponding base mesh triangle.
- ➢ Compatibly remesh the input models using the parameterizations

One common base domain

 $\Rightarrow f = f_t^{-1} \circ f_{st} \circ f_s$

Parameterization domain

- ➢ Cutting to disk topology.
- ➢ Computing the joint flattenings ϕ, ψ.
- ➢ Bijection Lifting

Cutting paths

- ➢ Bijective correspondence
	- Shortest path
	- Minimal spanning tree

Computing $\overline{\phi}$, $\overline{\psi}$

➢ Constraint

- Common boundary condition
- Locally injective

Bijection Lifting

 \triangleright Bijective parameterizations

Bijection Lifting

➢ Only locally injective constrains

Results

Disadvantages

➢ Cut-dependent

