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Smooth surface



Parameterized surface

➢ A parametrized surface is a continuous function 𝑓: Ω → ℝ3, where the 

domain Ω ⊆ ℝ2 is some (connected) set on the plane.

Ω

𝑓(Ω)



Reparameterization

➢ Two parametrizations 𝑓1:  Ω1 →  ℝ3and 𝑓2 ∶  Ω2 →  ℝ3 are said to yield 

the same surface  if there exists a continuous and continuously invertible 

function 𝜙: Ω1 → Ω2 , called a reparameterization, such that 𝑓1 𝑢, 𝑣 =

𝑓2(𝜙(𝑢, 𝑣)) for all (u, v) ∈ Ω1; in short 𝑓1 = 𝑓2 ∘ 𝜙



Reparameterization

Ω1 = Ω2 = 𝐵1(0), 𝑓1 𝑢, 𝑣 = (𝑢, 𝑣, 𝑢2 − 𝑣2), 𝑓2 𝑠, 𝑡 =
2

2
𝑠 + 𝑡 ,

2

2
𝑠 − 𝑡 , 2𝑠𝑡  

Ω1

𝑓1(Ω1)

Ω2

𝑓1
𝑓2

𝑓2(Ω2)

𝑠 ⟵
2

2
(𝑢 + 𝑣)

𝑡 ⟵
2

2
(𝑢 − 𝑣)



Differential of a surface

➢ 𝑑𝑓: 𝑋 ∈ Ω → 𝑇𝑃𝑓 ∈ ℝ3  push forward 𝑋



Differential in coordinates

Ω = 𝑢2 + 𝑣2 ≤ 1 , 𝑓 𝑢, 𝑣 = 𝑢, 𝑣, 𝑢2 − 𝑣2

 𝑑𝑓 =
𝜕𝑓

𝜕𝑢
𝑑𝑢 +

𝜕𝑓

𝜕𝑣
𝑑𝑣 =

1,0,2𝑢 𝑑𝑢 + 0, −1,2𝑣 𝑑𝑣

𝑢, 𝑣 = 0,0 , 𝑑𝑢, 𝑑𝑣 =
3

4
1, −1

 ⇒ 𝑑𝑓 = (
3

4
, −

3

4
, 0)



Differential – Jacobian matrix

Consider a map 𝑓 : ℝ𝑛 →  ℝ𝑚, let 𝑥1, 𝑥2, … , 𝑥𝑛  be the coordinates of ℝ𝑛. The 

Jacobian of 𝑓 is the matrix

where 𝑓1, 𝑓2, … , 𝑓𝑚 are the components of 𝑓. The differential in matrix 

representation are 𝑑𝑓 𝑋 = 𝐽𝑓𝑋.

       

𝐽𝑓 =

𝜕𝑓1

𝜕𝑥1
…

𝜕𝑓1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑚

𝜕𝑥1
⋯

𝜕𝑓𝑚

𝜕𝑥𝑛



Tangent plane

Surface 𝑓 : Ω ⊂ ℝ2 →  ℝ3, 𝐽𝑓 3 × 2 matrix and 𝑑𝑓 𝑋 = 𝐽𝑓𝑋.

Normal : 𝐽𝑓
⊥ = {𝐽𝑛|𝐽𝑛 ⊥ 𝐽𝑒1

, 𝐽𝑛 ⊥ 𝐽𝑒2
}

       

𝐽𝑓𝑋 =

𝜕𝑓1

𝜕𝑥1

𝜕𝑓1

𝜕𝑥2

𝜕𝑓2

𝜕𝑥1

𝜕𝑓2

𝜕𝑥2

𝜕𝑓3

𝜕𝑥1

𝜕𝑓3

𝜕𝑥2

𝑑𝑥1

𝑑𝑥2
= [𝐽𝑒1

 𝐽𝑒2
]

𝑑𝑥1

𝑑𝑥2



Regular surface

➢ A parametrized surface 𝑓 ∶  Ω →  ℝ3 is 

regular (immersion) if 𝛾 has continuous 

Jacobian, and has non-vanishing 

determinant 𝐽𝑓 ≠ 0 for every point. 

➢ Immersion vs. embedding



Isometric parameterization

➢ For regular curves, reparametrized by arclength → isometric.

➢ For regular surfaces, things are different : metric and curvature  



Riemann metric

➢ Measurements of lengths and angles of 

tangent vectors 𝑋, 𝑌

➢ This information is encoded by the so-

called Riemannian metric g(𝑋, 𝑌)



Riemann metric

➢ Consider two parameterizations.

➢ Induce metric: 

g 𝑋, 𝑌 = 𝑑𝑓 𝑋 , 𝑑𝑓(𝑌)

         = 𝐽𝑓𝑋
𝑇

𝐽𝑓𝑌

         = 𝑋𝑇 𝐽𝑓
𝑇𝐽𝑓 𝑌

First fundamental form 𝐽𝑓
𝑇𝐽𝑓



Abstract Riemannian metric

➢ Induced Riemannian metric is just a 

(smoothly-varying) inner product at 

each point.

➢ We just write down some arbitrary 

smoothly-varying inner product.

➢ Inner product measures angles, 

lengths, areas, distances, …



Embedding theorems

➢ Given a Riemannian metric g on region Ω, can we find an embedding 𝑓 such that 

g(𝑋, 𝑌) = 𝑑𝑓(𝑋), 𝑑𝑓(𝑌) ?

➢ Nash embedding theorems: always have global 𝐶𝑘 embedding in sufficiently high 

dimension.

➢ Most surfaces aren’t easily expressed as the image of one parameterized “patch”, 

e.g. how to find Ω for close surface?



Atlas & charts

➢ Instead, cover a surface with 

overlapping patches (“charts”).

➢ Each chart 𝜙𝑖 defines an induced 

Riemannian metric g𝑖 :

g𝑗 𝑑𝜙𝑖𝑗 𝑋 , 𝑑𝜙𝑖𝑗 𝑌

= gi(𝑋, 𝑌)



Riemann manifold

➢ Collection of open sets 𝒰𝑖 ⊂ ℝ2

➢ Transition maps 𝜙𝑖𝑗 on overlaps 

(differentiable both ways)

➢ local metric g𝑖 per patch, compatible on 

overlaps

Riemannian manifold ℳ is “union” of all 

these pieces (do not need embeddings 𝜙𝑖)



Curvature

➢ Intuitively, describes “how much a shape bends”

• Extrinsic: how quickly does the tangent plane/normal change?

•  Intrinsic: how much do quantities differ from flat case?



Gauss map

➢ The Gauss map 𝑁 is a continuous 

map taking each point on the 

surface to a unit normal vector

➢ Visualize Gauss map as a map from 

the domain to the unit sphere



Weingarten map

➢ The Weingarten map 𝑑𝑁 is the 

differential of the Gauss map 𝑁

➢ At any point, 𝑑𝑁(𝑋) gives the 

change in the normal vector along 

a given direction 𝑋

➢ 𝑑𝑁 𝑋 , 𝑁 = 0, for any 𝑋



Weingarten map—example

Recall that for the sphere, 𝑁 = −𝑓. Hence, Weingarten map 𝑑𝑁 is just −𝑑𝑓 

𝑓 = cos 𝑢 sin 𝑣 , sin 𝑢 sin 𝑣 , cos 𝑣

 𝑑𝑓 = − sin 𝑢 sin 𝑣 , cos 𝑢 sin 𝑣 , cos 𝑣 𝑑𝑢

            + cos 𝑢 cos 𝑣 , sin 𝑢 cos 𝑣 , − sin 𝑣 𝑑𝑣

 𝑑𝑁 = sin 𝑢 sin 𝑣 , − cos 𝑢 sin 𝑣 , − cos 𝑣 𝑑𝑢

            + − cos 𝑢 cos 𝑣 , − sin 𝑢 cos 𝑣 , sin 𝑣 𝑑𝑣



Normal curvature

Curves: rate of change of the tangent.

Surfaces: how quickly the normal is changing.

Normal curvature is rate at which normal is 

bending along a given tangent direction:

𝜅𝑁 𝑋 =
𝑑𝑓 𝑋 , 𝑑𝑁(𝑋)

|𝑑𝑓(𝑋)|^2

Equivalent to intersecting surface with normal-tangent plane and measuring 
the usual curvature of a plane curve.



Normal curvature—example

Consider a parameterized cylinder:

𝑓 𝑢, 𝑣 = (cos 𝑢 , sin 𝑢 , 𝑣)

𝑑𝑓 = − sin 𝑢 , cos 𝑢 , 0 𝑑𝑢 + 0,0,1 𝑑𝑣 

𝑁 = − sin 𝑢 , cos 𝑢 , 0 × 0,0,1 = (cos 𝑢 , sin 𝑢 , 0)

𝑑𝑁 = − sin 𝑢 , cos 𝑢 , 0 𝑑𝑢 

𝜅𝑁
𝜕

𝜕𝑢
=

𝑑𝑓
𝜕

𝜕𝑢
,𝑑𝑁(

𝜕

𝜕𝑢
)

𝑑𝑓
𝜕

𝜕𝑢

2 =
− sin 𝑢,cos 𝑢,0 , − sin 𝑢,cos 𝑢,0

− sin 𝑢,cos 𝑢,0 2 = 1, 𝜅𝑁
𝜕

𝜕𝑣
= 0



Principal curvature

Among all directions 𝑋, there are two principal directions 𝑋1, 𝑋2 where normal 

curvature has minimum/maximum value (respectively).

1. g 𝑋1, 𝑋2 = 0

2. 𝑑𝑁(𝑋𝑖) = 𝜅𝑖𝑑𝑓(𝑋𝑖) 



Shape operator

The change in the normal 𝑁 is always tangent to the surface: 𝑑𝑁, 𝑁 = 0.

Therefore must be some linear map 𝑆 from tangent vectors  to tangent vectors, 

called the shape operator, such that 𝑑𝑓 𝑆𝑋 = 𝑑𝑁(𝑋).

➢ Principal directions are the eigenvectors of 𝑆.

➢ Principal curvatures are eigenvalues of 𝑆.

Note: 𝑆 is not a symmetric matrix! Hence, eigenvectors are not orthogonal in ℝ2; 

only orthogonal with respect to induced metric g.



Shape operator—example

Consider a nonstandard parameterized cylinder:     𝑓 𝑢, 𝑣 = (cos 𝑢 , sin 𝑢 , 𝑢 + 𝑣)    𝑑𝑓 =

− sin 𝑢 , cos 𝑢 , 1 𝑑𝑢 + 0,0,1 𝑑𝑣 𝑁 = cos 𝑢 , sin 𝑢 , 0  𝑑𝑁 = − sin 𝑢 , cos 𝑢 , 0 𝑑𝑢 

𝑑𝑓(𝑆𝑋) = 𝑑𝑁(𝑋)
− sin 𝑢 0
cos 𝑢

1
0
1

𝑆11 𝑆12

𝑆21 𝑆22
=

− sin 𝑢 0
cos 𝑢

0
0
0

 

𝑆 =
1 0

−1 0
[𝑋1, 𝑋2] =

0 −1
1 1

𝑑𝑓 𝑋1 = 0,0,1      𝜅1 = 0
𝑑𝑓 𝑋2 = (sin 𝑢 , − cos 𝑢 , 0) 𝜅2 = 1



Umbilic points

Points where principal curvatures are equal are called umbilic points

Principal directions are not uniquely determined here

𝑆 =
1/𝑟 0

0 1/𝑟 𝜅1 = 𝜅2 =
1

𝑟

∀𝑋, 𝑆𝑋 =
1

𝑟
𝑋



Principal curvature nets

➢ Walking along principal direction field yields principal curvature lines.

➢ Collection of all such lines is called the principal curvature network



Topological invariance of Umbilic count

➢ Classify regions around (isolated) umbilic points into three types based on 

behavior of principal network.

➢ If 𝑘1, 𝑘2, 𝑘3 are number of umbilics of each type, then 𝑘1 − 𝑘2 + 𝑘3 = 2𝜒



Gaussian and mean curvature

➢ Gaussian and mean curvature also fully describe local bending

 Gaussian curvature: 𝐾 = 𝜅1𝜅2           Mean curvature: 𝐻 =
1

2
(𝜅1 + 𝜅2) 



Gauss-Bonnet theorem

➢ Recall that the total curvature of a 

closed plane curve was always equal 

to 2π times turning number 𝑘. 

➢ For surfaces, Gauss-Bonnet theorem 

says total Gaussian curvature is 

always 2π times Euler characteristic 

𝜒 = 2 − 2g



Gauss-Bonnet theorem with boundary

➢ Generalize to surfaces with boundary:

𝑀     

 
𝐾𝑑𝐴 + 𝑀��

 
𝜅𝑔𝑑𝑠 = 2𝜋𝜒, 𝜒 = 2 − 2g − 𝑏 



Curvature of a curve in a surface

➢ Broke the “bending” of a space curve into 

curvature 𝜅 and torsion 𝜏

➢ For a curve in a surface, can instead break 

into normal and geodesic curvature

𝜅𝑛 = 𝑁𝑀,
𝑑𝑇

𝑑𝑠
,  𝜅g = 𝐵𝑀,

𝑑𝑇

𝑑𝑠



Example: planar disk

➢ For a disk in the plane, total curvature of boundary is equal to 2π (turning 

number theorem)



Mean curvature

➢ Lemma. Normal curvature along 𝑌 = cos 𝜃 𝑌1 + sin 𝜃 𝑌2, 𝑌1, 𝑌2 principal directions,

       𝜅𝑁|𝑌 = cos2 𝜃 𝜅1 + sin2 𝜃 𝜅2 

➢ Theorem. The mean curvature is the normal curvature averaged over all directions 

𝑌 = cos 𝜃 𝑋1 + sin 𝜃 𝑋2, where 𝑋1, 𝑋2 are an orthonormal basis of tangent plane, 

        𝐻 =
1

2𝜋
0

2𝜋
𝜅𝑁 𝑌 𝜃 𝑑𝜃 

𝑑𝑓 𝑆𝑋 = 𝑑𝑁(𝑋).



Total mean curvature?

➢ Theorem. (Minkowski): for a convex surface,

න
𝑀

 

𝐻 𝑑𝐴 ≥ 4𝜋𝐴

When the shape is a sphere, equality satisfies.



First and second fundamental form

➢ Fundamental Theorem:

Two surfaces in ℝ3 are identical up to rigid 

motions if and only if they have the same first and 

second fundamental forms

Not every pair of bilinear forms 𝐼, 𝐼𝐼 describes a

valid surface—must satisfy the Gauss Codazzi 

equations



Descriptions of Surfaces

➢ What data is sufficient to completely determine a surface in space?

• First & second fundamental form (Gauss-Codazzi)

• Mean curvature and metric (up to “Bonnet pairs”)

• Convex surfaces: metric alone is enough (Alexandrov/Pogorolev)

• Gauss curvature essentially determines metric (Kazdan-Warner)

• …



Discrete surface



Piecewise linear approximation

Coordinate 𝑓𝑖  of each vertex

Linear interpolate via barycentric coordinate

𝑝

൞

𝑡0 = 𝑠Δ𝑝𝑝1𝑝2
/𝑠Δ𝑝0𝑝1𝑝2

𝑡1 = 𝑠Δ𝑝𝑝2𝑝0
/𝑠Δ𝑝0𝑝1𝑝2

𝑡2 = 𝑠Δ𝑝𝑝0𝑝1
/𝑠Δ𝑝0𝑝1𝑝2

𝑓 𝑝 = 𝑡0𝑓0 + 𝑡1𝑓1 + 𝑡2𝑓2,
𝑡0 + 𝑡1 + 𝑡2 = 1



Discretization

➢ Differential → edge vector: (𝑑𝑓)𝑖𝑗 = 𝑓𝑗 − 𝑓𝑖

➢ Discrete tangent: 𝑇𝑖𝑗𝑘 = { 𝑑𝑓 𝑖𝑗 , 𝑑𝑓 𝑗𝑘}.  

➢ Discrete face normal : 𝑁𝑖𝑗𝑘
 =

𝑑𝑓 𝑖𝑗× 𝑑𝑓 𝑗𝑘

| 𝑑𝑓 𝑖𝑗× 𝑑𝑓 𝑗𝑘|



Vertex normal

➢ Area weighted vertex normal and angle weighted vertex normal



Local averaging region

triangle barycenters 
edge midpoints 

triangle barycenters → 
triangle circumcenter 

circumcenter for obtuse 
triangles → edge midpoints 



Discrete regular (immersion)

➢ Local injectivity: 𝐽𝑓 ≠ 0 ⟺

𝑑𝑓 𝑋 = 0 if and only if 𝑋 = 0



Discrete Riemann metric

➢ Inner product measures angles, 

lengths, areas, distances, …

➢ For triangular mesh: {𝑙𝑖𝑗}



Recovery from metric

➢ Recovers mesh from lengths : Chern et al, “Shape from Metric” (2018)

Get deeper into discrete surfaces: discrete immersion, discrete spin structure …

http://page.math.tu-berlin.de/~chern/projects/ShapeFromMetric/


Recovery from face normals

➢ Cross product of normals gives edge directions

➢ Dot product of edges gives interior angles

➢ Three angles determine triangle up to scale; 

normal determines plane of each triangle

➢ Build triangles one-by-one and “glue” together



Discrete Curvature



Angle Defect

➢ The angle defect at a vertex 𝑖 is the deviation of 

the sum of interior angles from the Euclidean 

angle sum of 2𝜋:

        Ω𝑖 = 2𝜋 − σ𝑖𝑗𝑘 𝜃𝑖
𝑗𝑘

Measure how “flat” is the vertex.



Gaussian curvature and Spherical Area

As 𝑑𝑓 𝑋 × 𝑆 = 𝑑𝑁(𝑋),  and 𝐾 =

𝑘1𝑘2 = |𝑆|

The area of Gauss map: 

න
 

|𝑑𝑁|𝑑𝒰 = න
 

𝑆 𝑑𝑓 𝑑𝒰 = න
 

𝐾𝑑A



Angle Defect and Spherical Area

Consider the discrete Gauss map:

• unit normals on surface become points on the sphere

• dihedral angles on surface become interior angles on 

sphere

• interior angles on surface become dihedral angles on 

the sphere

• angle defect on surface becomes area on the sphere



Angle Defect and Spherical Area

Spherical triangle area formula: 

𝐴 = 𝑅2(𝛼 + 𝛽 + 𝛾 − 𝜋)

Area poly = 2𝜋 − 

𝑖𝑗𝑘

𝜃𝑖
𝑗𝑘

= Ω𝑖



Discrete Gauss Bonnet Theorem

Theorem. For a smooth surface of genus g, the total 

Gauss curvature is 

𝑀     

 
𝐾𝑑𝐴 = 2𝜋𝜒

Theorem. For a discrete surface of genus g, the total 

angle defect is

      σ𝑖∈𝑉 Ω𝑖 = 2𝜋𝜒



Mean curvature

➢ For any smooth immersed surface 𝑓, ∆ 𝑓 = 2𝐻𝑁

➢ Discretize Δ𝑓 on vertex neighbor

𝐴𝑖   

 
Δ𝑓𝑑𝐴 = 𝐴𝑖

 
∇ ⋅ ∇𝑓𝑑𝐴 = 𝐴𝑖��

∇𝑓, 𝒏 𝑑𝑠 

• 𝐴𝑖 is the local averaging domain of vertex 𝑖.

• 𝜕𝐴𝑖 is the boundary of 𝐴𝑖 .

• 𝒏 is the outward pointing unit normal of the boundary.



Mean curvature

➢ Consider red line segment,

∇𝑓, 𝒏 𝑠 = ∇𝑓,
𝑋𝑖𝑋𝑗

𝑋𝑖𝑋𝑗
= 𝑓𝑗 − 𝑓𝑖

𝑆

𝑋𝑖𝑋𝑗
=

cot 𝛽𝑖𝑗

2
(𝑓𝑗 − 𝑓𝑖)

2𝐻𝑖𝑁𝑖 = 𝐴𝑖��
∇𝑓, 𝒏 𝑑𝑠 =

1

2
σ𝑗∈Ω(𝑖)

 (cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)(𝑓𝑗 − 𝑓𝑖) 



Principal Curvatures

➢ Gaussian 𝐾 = 𝜅1𝜅2,  mean 𝐻 =
𝜅1+𝜅2

2

➢ Principal :   𝜅1 = 𝐻 − 𝐻2 − 𝐾, 𝜅2 = 𝐻 + 𝐻2 − 𝐾

➢ Discrete principal: 
𝐻𝑖

𝐴𝑖
− (

𝐻𝑖

𝐴𝑖
)2−

𝐾𝑖

𝐴𝑖



Principal directions



Principal directions


