Surface Reconstruction I

USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn

https://qingfang1208.github.io/

Introduction

Surface Reconstruction

> Rendering

Reconstruction

Shape from ...

Laser triangulation

Shape from ...

- Laser triangulation
- > Stereo

Shape from ...

- Laser triangulation
- > Stereo

> ...

Structured Light

Shape from data

Reverse engineering

- > Reverse engineering
- > Augmented reality

- > Reverse engineering
- Augmented reality
- Medical Imaging

- > Reverse engineering
- > Augmented reality
- > Medical Imaging

 \triangleright

...

> Digital preservation

Problem

- Input: a multi-view set of points in 3D that sampled from a model surface
- > Output: a 2D manifold mesh surface that closely approximates the model

Registration

Depth Image

- > Resolution: width × height
- > Pixels: depth value
 - Nearer is darker

Point clouds

- > Preprocessing
 - Segmentation

Point clouds

- > Preprocessing
 - Segmentation
 - Camera matrix

$$Z\begin{pmatrix}u\\v\\1\end{pmatrix} = \begin{pmatrix}f_x & 0 & c_x\\0 & f_y & c_y\\0 & 0 & 1\end{pmatrix}\begin{pmatrix}X\\Y\\Z\end{pmatrix}$$

Registration

Any surface reconstruction algorithm should strive to use all of the detail in all the available range data.

Accurate registration may require

- Calibrated scanner/object positioning
- Software-based optimization

Pairwise registration

- > Source point sets: $P = \{p_1, \dots, p_m\}$
- > Target point sets: $Q = \{q_1, \dots, q_n\}$
- > Find function *f* , s.t. minimize

 $E = dist^2(f(P), Q)$

- > f is rigid transformation.
- Special case: $\{p_i \rightarrow q_i, i = 1, ..., n\}$ $E(R,t) = \sum_{i=1}^n ||q_i Rp_i t||^2$ There is a close-form solution.

$$E(R,t) = \sum_{i=1}^{n} ||q_i - Rp_i - t||^2$$

$$\frac{\partial E}{\partial t} = 2\sum_{i=1}^{n} (q_i - Rp_i - t) = 0$$

$$\implies t = \frac{1}{n} \sum_{i=1}^{n} (q_i - Rp_i)$$

Let
$$\bar{p}_i = p_i - \frac{1}{n} \sum_{i=1}^n p_i$$

$$\overline{q}_i = q_i - \frac{1}{n} \sum_{i=1}^n q_i$$

 $E(R) = \sum_{i=1}^{n} \|\bar{q}_i - R\bar{p}_i\|^2$ $= \|\bar{Q} - R\bar{P}\|_F^2$ $= tr((\bar{Q} - R\bar{P})^T(\bar{Q} - R\bar{P}))$ $= C - 2tr(R\bar{P}\bar{Q}^T)$

Let $\overline{P}\overline{Q}^T = USV^T$, as $tr(A^TB)^2 \le tr(A^TA)tr(B^TB)$ Then $tr(RUSV^T)^2 = tr(SV^TRU)^2$ $\leq tr(SS^T) \leq tr(S)^2$ Minimizer $R = VU^T$

Let
$$\bar{p}_i = p_i - \frac{1}{n} \sum_{i=1}^n p_i$$

 $\bar{q}_i = q_i - \frac{1}{n} \sum_{i=1}^n q_i$
 $E(R) = \sum_{i=1}^n ||\bar{q}_i - R\bar{p}_i||^2$
 $= ||\bar{Q} - R\bar{P}||_F^2$
 $= tr((\bar{Q} - R\bar{P})^T(\bar{Q} - R\bar{P}))$
 $= C - 2tr(R\bar{P}\bar{Q}^T)$

- > f is rigid transformation.
- > Iterative close-point (ICP):
 - Identify nearest points
 - Compute the optimal (R, t)
 - Repeat until E is small

Non-rigid registration

- \succ f is non-rigid.
- > Deformation fields:
 - > Rigid locally

Non-rigid registration

- \succ f is non-rigid.
- > Deformation fields:
 - > Rigid locally
 - Interpolation

Deformation graph Graph node: $\hat{x} - \hat{p_i} = A_i(x - p_i) + t_i$, affine matrix $A_i \in \mathbb{R}^{3 \times 3}$.

$$x = \sum_{p_i \in \mathcal{N}(x)} w_i(x) \times (A_i(x - p_i) + t_i + \hat{p_i})$$

Non-rigid registration

Elephant (329 nodes, 21k vertices)

- > Given: n scans around an object
- Goal: align them all
- First attempt: ICP each scan to one other

- Want method for distributing accumulated error among all scans
- > Methods:
 - Set "anchor" scan one scan covers
 - most of surface
 - Align each new scan to all previous scans

- Want method for distributing accumulated error among all scans
- > Methods:
 - Brute-Force Solution

While not converged:

- For each scan:
 - For each point:
 - For every other scan
 - » Find closest point

- Minimize error w.r.t. transforms of all scans

- Want method for distributing accumulated error among all scans
- > Methods:
 - Brute-Force Solution
 - Graph Methods

Find transformations consistent as possible with all pairwise ICP

Reconstruction

Reconstruction methods

- > Explicit methods
 - > VD and DT
 - ▶ ...
- > Implicit methods

<u>A new Voronoi-based surface reconstruction algorithm</u>

Delaunay triangulation

- > 2D case
 - Curve from Points
 - Which edges to choose?

Medial Axis

 Set of points with more than one closest point on the surface.

Medial Axis

- Set of points with more than one
 closest point on the surface.
- Locus of centers of tangentially touch the curve in at least 2 points.

Medial Axis and VD

 Voronoi diagram of set of points on curve approximates Medial if points sampled densely enough.

Medial Axis and VD

- Voronoi diagram of set of points on curve approximates Medial if points sampled densely enough.
- r-sample : distance from any point on surface to nearest sample point ≤ r × distance from point to medial axis

Idea

- Adopt Delaunay edges which are "far" from Media Axis
- To represent Media Axis use Voronoi vertices
- Edge e in crust <=> circumcircle of e contains no other sample points or
 Voronoi vertices of S

2D Crust algorithm

- Compute Voronoi diagram of S and V is the set of Voronoi vertices.
- Compute Delaunay triangulation of SUV.
- Return all Delaunay edges between points of S.

Theory

> Theorem:

The crust of an r-sample from a smooth curve F, for $r \le 0.25$ connects only adjacent samples of F.

> If r is large

Delaunay triangulation

- > 2D case
 - Curve from Points
 - Which edges to choose?
- > 3D case
 - Shell from points

Differences between 2D and 3D

- In 3D Voronoi cells are polyhedral
- In 3D Voronoi vertex is equidistant from 4 sample points.
- In 3D not all Voronoi vertices are near medial axis (regardless of sampling density)

Observation

- Some vertices of the Voronoi
 cell are near medial axis.
- Poles-two farthest vertices of Vs
 (p⁺(s), p⁻(s)) one on each
 side of the surface.

3D Crust algorithm

- Compute Voronoi diagram of S
- > For each s \in S, identify the poles $p^+(s)$ and $p^-(s)$
 - $p^+(s)$ is the vertex of Vs most distant from s
 - $p^{-}(s)$ is the vertex of Vs most distant from s in the opposite direction
- Let P be the set of all poles and compute Delaunay triangulation T of S U P
- > Add to crust all triangles in T with vertices only in S

Post-processing

Delete triangles whose normals differ too much from the direction
 vectors from the triangle vertices to their poles

Problems & Limitations

- Sampling of points needs to be dense –Undersampling causes holes
- Problems at sharp corners
- > Heuristically choosing poles
- > Algorithm is slow

Reconstruction methods

- Explicit methods
 - > VD and DT
 - Alpha shape
 - > ...
- > Implicit methods

Convex hull V.S. alpha shape

- Ice cream with solid chocolate chips
- Spherical ice spoon
- Curve out all parts of the ice cream with out touching the chocolate chips
- > Straighten all curvatures

> 2D case -> 3D case

Alpha complex Delaunay triangulation $\hat{\mathscr{D}}$ Simplicial complex $\hat{\mathscr{D}}$ k-simplex $\hat{\mathscr{Y}}$

k-simplex

- k − simplex Δ_S: the convex hull of S, for any subset S ⊆ P of size |S| = k + 1
- > The general position assumption : k simplex Δ_S has exactly dimension k

Simplicial complex

- A collection C of simplices forms a simplicial
 complex if it satisfies the following conditions :
 - For a simplex Δ_S of C, the boundary simplices of Δ_S are in C.
 - For two simplices of C, their intersection is either
 Ø or a simplex in C

- > r-ball : an open ball with radius r
 - 0-ball : point
 - ∞-ball : open half-space
- For given point set P, r-ball b is empty if b ∩ P = Ø

α -exposed

- > A k − simplex Δ_S is α-exposed if there
 exists an empty α-ball b with S = ∂b ∩ P
- If Δ_S is an α-exposed simplex of P, then $\Delta_S \in DT(P).$
- For d = 2, circumsphere of S

For d < 2, increase α until meet other point.

α -exposed

Ice-cream spoon hits against one
 or more of the points in $P \rightarrow$ the
 simplex spanned by these points is
 α -exposed

α -shape

The boundary ∂S_α of the α-shape of the point set P consists of all k− simplex of P for 0 ≤ k < d which are α-exposed</p> $∂S_α = \{\Delta_S | S ⊆ P, |S| ≤ d \text{ and } \Delta_S α-\text{exposed} \}$

Property

$$\lim_{\alpha \to 0} \partial S_{\alpha} = P, \quad \lim_{\alpha \to \infty} \partial S_{\alpha} = \partial conv(P)$$
$$\Rightarrow \lim_{\alpha \to 0} S_{\alpha} = P, \quad \lim_{\alpha \to \infty} S_{\alpha} = conv(P)$$

▶ For any $0 \le \alpha \le \infty$, we have $\partial S_{\alpha} \subset DT(P)$

α -complex

- ≻ A simplex $\Delta_S \in DT(P)$ is in C_α if
 - a) the circumcircle of S with radius $r < \alpha$ is empty or
 - b) it is a boundary simplex of a simplex of a)

$$\partial S_{\alpha} = \partial C_{\alpha}$$

 C_{α}

Algorithm

- > Computing the Delaunay triangulation of *P*, knowing the boundary of α -shape is contained in it.
- > Determine C_{α} by inspecting all simplices $\Delta_S \in DT(P)$. If the circumcircle of *S* with radius *r* < α is empty, we accept Δ_S as a member of C_{α} , together with all its faces.
- > All *d*-simplices of C_{α} make up the interior of $S_{\alpha}(P)$ and all simplices on the boundary of ∂C_{α} form ∂S_{α}

Family of α

 $\alpha = \{0, 0.19, 0.25, 0.75, \infty\}$

Problems & Limitations

- ≻ Choosing the "best" α value is not trivial → some heuristical methods
- Not for all object's surfaces there is a good α value due to non-uniformly sampled data
 - Interstices might be covered
 - Neighboring objects might be connected
 - Joints or sharp turns might not be sharp anymore

Reconstruction methods

- Explicit methods
 - > VD and DT
 - > Alpha shape
 - Zippering range scans

> Implicit methods

 \triangleright

•••

Idea

- > Use range scanner properties for reconstruction
- Single scan from given direction produces regular lattice of points in X and Y with changing depth (Z).
- > Take multiple scans to create complete model

Project & insert boundary vertices

Intersect boundary edges

Discard overlap region

Locally optimize triangulation

Problems & Limitations

- > Pros:
 - Preserves regular structure of each scan
 - Fast, no additional data structures
- > Cons:
 - > Lot of small "fixes" / "tricks"
 - > Problems with complex, noisy, incomplete data

