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Introduction



Surface Reconstruction

➢ Rendering

➢ Reconstruction



Shape from …

➢ Laser triangulation
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Shape from …

➢ Laser triangulation

➢ Stereo

➢ Structured Light

➢ …



Shape from data
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Applications

➢ Reverse engineering

➢ Augmented reality

➢ Medical Imaging

➢ Digital preservation

➢ …



Problem

➢ Input: a multi-view set of points in 3D that sampled from a model surface

➢ Output: a 2D manifold mesh surface that closely approximates the model

Scanning 
devices

Registration Reconstruction



Registration



Depth Image

➢ Resolution:  width × height

➢ Pixels: depth value

• Nearer is darker



Point clouds

➢ Preprocessing

• Segmentation



Point clouds

➢ Preprocessing

• Segmentation

• Camera matrix

𝑍
𝑢
𝑣
1

=
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

𝑋
𝑌
𝑍



Registration

➢ Any surface reconstruction algorithm should strive to use all of the detail in all 

the available range data.



Accurate registration may require

➢ Calibrated scanner/object positioning

➢ Software‐based optimization



Pairwise registration

➢ Source point sets: 𝑃 = {𝑝1, … , 𝑝𝑚}

➢ Target point sets: 𝑄 = {𝑞1, … , 𝑞𝑛}

➢ Find function 𝑓, s.t. minimize

𝐸 = 𝑑𝑖𝑠𝑡2(𝑓 𝑃 , 𝑄)

𝑓



Rigid registration

➢ 𝑓 is rigid transformation.

➢ Special case: {𝑝𝑖 → 𝑞𝑖 , 𝑖 = 1, … 𝑛}

𝐸 𝑅, 𝑡 = σ𝑖=1
𝑛 𝑞𝑖 − 𝑅𝑝𝑖 − 𝑡 2

There is a close-form solution.



Rigid registration
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Rigid registration

Let ത𝑃 ത𝑄𝑇 = 𝑈𝑆𝑉𝑇, as 

𝑡𝑟 𝐴𝑇𝐵 2 ≤ 𝑡𝑟 𝐴𝑇𝐴 𝑡𝑟(𝐵𝑇𝐵)

Then

𝑡𝑟 𝑅𝑈𝑆𝑉𝑇 2 = 𝑡𝑟 𝑆𝑉𝑇𝑅𝑈 2

≤ 𝑡𝑟 𝑆𝑆𝑇 ≤ 𝑡𝑟 𝑆 2

Minimizer 𝑅 = 𝑉𝑈𝑇



Rigid registration

➢ 𝑓 is rigid transformation.

➢ Iterative close-point (ICP): 

• Identify nearest points

• Compute the optimal (𝑅, 𝑡)

• Repeat until E is small



Rigid registration



Non-rigid registration 

➢ 𝑓 is non-rigid.

➢ Deformation fields:

➢ Rigid locally



Non-rigid registration 

➢ 𝑓 is non-rigid.

➢ Deformation fields:

➢ Rigid locally

➢ Interpolation 

Deformation graph

Graph node:

ො𝑥 − ෝ𝑝𝑖 = 𝐴𝑖 𝑥 − 𝑝𝑖 + 𝑡𝑖 ,

affine matrix 𝐴𝑖 ∈ ℝ3×3.

𝑥 = ෍
𝑝𝑖∈𝒩(𝑥)

𝑤𝑖 𝑥 × 

(𝐴𝑖 𝑥 − 𝑝𝑖 + 𝑡𝑖 + ෝ𝑝𝑖)



Non-rigid registration 



Global Registration

➢ Given: n scans around an object

➢ Goal: align them all

➢ First attempt: ICP each scan to one 

other



Global Registration

➢ Want method for distributing accumulated error among all scans

➢ Methods:

• Set “anchor” scan - one scan covers 

most of surface

• Align each new scan to all previous 

scans



Global Registration

➢ Want method for distributing accumulated error among all scans

➢ Methods:

• Brute-Force Solution



Global Registration

➢ Want method for distributing accumulated error among all scans

➢ Methods:

• Brute-Force Solution

• Graph Methods

Find transformations consistent as 

possible with all pairwise ICP



Reconstruction



Reconstruction methods

➢ Explicit methods

➢ VD and DT

➢ …

➢ Implicit methods

A new Voronoi-based surface reconstruction algorithm

https://dl.acm.org/doi/10.1145/280814.280947


Delaunay triangulation

➢ 2D case

• Curve from Points

• Which edges to choose?



Medial Axis 

➢ Set of points with more than one 

closest point on the surface.



Medial Axis 

➢ Set of points with more than one 

closest point on the surface.

➢ Locus of centers of tangentially 

touch the curve in at least 2 points.



Medial Axis and VD

➢ Voronoi diagram of set of points on 

curve approximates Medial if points 

sampled densely enough.



Medial Axis and VD

➢ Voronoi diagram of set of points on 

curve approximates Medial if points 

sampled densely enough.

➢ r‐sample : distance from any point on 

surface to nearest sample point ≤ r ×

distance from point to medial axis



Idea

➢ Adopt Delaunay edges which are “far” 

from Media Axis

➢ To represent Media Axis use Voronoi 

vertices

➢ Edge e in crust <=> circumcircle of e 

contains no other sample points or 

Voronoi vertices of S



2D Crust algorithm

➢ Compute Voronoi diagram of S and V is 

the set of Voronoi vertices.

➢ Compute Delaunay triangulation of SUV.

➢ Return all Delaunay edges between 

points of S.



Theory

➢ Theorem: 

The crust of an r‐sample from a smooth curve F, 

for r ≤ 0.25 connects only adjacent samples of F.

➢ If r is large



Delaunay triangulation

➢ 2D case

• Curve from Points

• Which edges to choose?

➢ 3D case

➢ Shell from points



Differences between 2D and 3D

➢ In 3D Voronoi cells are polyhedral

➢ In 3D Voronoi vertex is equidistant from 

4 sample points.

➢ In 3D not all Voronoi vertices are near 

medial axis (regardless of sampling 

density)



Observation

➢ Some vertices of the Voronoi 

cell are near medial axis.

➢ Poles-two farthest vertices of Vs 

(𝑝+ 𝑠 , 𝑝− 𝑠 ) ‐ one on each 

side of the surface.



3D Crust algorithm 

➢ Compute Voronoi diagram of S

➢ For each s ∈ S, identify the poles 𝑝+ 𝑠 and 𝑝− 𝑠

• 𝑝+ 𝑠 is the vertex of Vs most distant from s

• 𝑝− 𝑠 is the vertex of Vs most distant from s in the opposite direction

➢ Let P be the set of all poles and compute Delaunay triangulation T of S U P

➢ Add to crust all triangles in T with vertices only in S



Post‐processing

➢ Delete triangles whose normals differ too much from the direction 

vectors from the triangle vertices to their poles



Problems & Limitations

➢ Sampling of points needs to be dense –Undersampling causes holes

➢ Problems at sharp corners

➢ Heuristically  choosing poles

➢ Algorithm is slow



Reconstruction methods

➢ Explicit methods

➢ VD and DT

➢ Alpha shape

➢ …

➢ Implicit methods



Alpha shape

➢ Convex hull  V.S. alpha shape



Alpha shape

➢ Ice cream with solid chocolate chips

➢ Spherical ice spoon

➢ Curve out all parts of the ice cream with out 

touching the chocolate chips

➢ Straighten all curvatures



Alpha shape

➢ 2D case -> 3D case



𝑘 – simplex 

➢ 𝑘 – simplex Δ𝑆 :  the convex hull of 𝑆 , for any subset 𝑆 ⊆ 𝑃 of size |S| =

𝑘 + 1

➢ The general position assumption : 𝑘 – simplex Δ𝑆 has exactly dimension k



Simplicial complex

➢ A collection C of simplices forms a simplicial 

complex if it satisfies the following conditions :

• For a simplex Δ𝑆 of C, the boundary simplices of 

Δ𝑆 are in C.

• For two simplices of C, their intersection is either 

∅ or a simplex in C



Alpha shape

➢ 𝑟-ball : an open ball with radius 𝑟

• 0-ball : point

• ∞-ball : open half-space

➢ For given point set 𝑃, 𝑟-ball 𝑏 is 

empty if 𝑏 ∩ 𝑃 = ∅



𝛼-exposed

➢ A 𝑘 – simplex Δ𝑆 is 𝛼-exposed if there 

exists an empty 𝛼-ball 𝑏 with 𝑆 = 𝜕𝑏 ∩ 𝑃

➢ If Δ𝑆 is an 𝛼-exposed simplex of 𝑃, then 

Δ𝑆 ∈ 𝐷𝑇(𝑃).

For 𝑑 = 2, circumsphere of 𝑆

For 𝑑 < 2, increase 𝛼 until meet other point.



𝛼-exposed

➢ Ice-cream spoon hits against one 

or more of the points in 𝑃 → the 

simplex spanned by these points is 

𝛼-exposed



𝛼-shape

➢ The boundary 𝜕𝒮𝛼 of the 𝛼-shape of the 

point set 𝑃 consists of all 𝑘– simplex of 𝑃 for 

0 ≤ 𝑘 < 𝑑 which are 𝛼-exposed

𝜕𝒮𝛼 = {Δ𝑆|𝑆 ⊆ 𝑃, 𝑆 ≤ 𝑑 and Δ𝑆 𝛼−exposed} 𝜕𝒮𝛼



Property

➢ lim
𝛼→0

𝜕𝒮𝛼 = 𝑃, lim
𝛼→∞

𝜕𝒮𝛼 = 𝜕𝑐𝑜𝑛𝑣(𝑃)

⟹ lim
𝛼→0

𝒮𝛼 = 𝑃, lim
𝛼→∞

𝒮𝛼 = 𝑐𝑜𝑛𝑣(𝑃)

➢ For any 0 ≤ 𝛼 ≤ ∞, we have 𝜕𝒮𝛼 ⊂ 𝐷𝑇(𝑃)



𝛼-complex

➢ A simplex ∆𝑆∈ 𝐷𝑇(𝑃) is in 𝐶𝛼 if

a) the circumcircle of 𝑆 with radius 𝑟 < 𝛼 is empty or

b) it is a boundary simplex of a simplex of  a)

𝜕𝒮𝛼 = 𝜕𝐶𝛼

𝜕𝒮𝛼 𝐶𝛼𝐷𝑇(𝑃)



Algorithm

➢ Computing the Delaunay triangulation of 𝑃, knowing the boundary of 𝛼-

shape is contained in it.

➢ Determine 𝐶𝛼 by inspecting all simplices ∆𝑆∈ 𝐷𝑇(𝑃). If the circumcircle of 

𝑆 with radius 𝑟 < 𝛼 is empty, we accept ∆𝑆 as a member of 𝐶𝛼, together 

with all its faces.

➢ All 𝑑-simplices of 𝐶𝛼 make up the interior of 𝒮𝛼(𝑃) and all simplices on the 

boundary of 𝜕𝐶𝛼 form 𝜕𝒮𝛼



Family of 𝛼

𝛼 = {0, 0.19, 0.25, 0.75, ∞}



Problems & Limitations

➢ Choosing the ”best” α value is not trivial → some 

heuristical methods

➢ Not for all object’s surfaces there is a good α value 

due to non-uniformly sampled data

• Interstices might be covered

• Neighboring objects might be connected

• Joints or sharp turns might not be sharp anymore



Reconstruction methods

➢ Explicit methods

➢ VD and DT

➢ Alpha shape

➢ Zippering range scans

➢ …

➢ Implicit methods



Idea

➢ Use range scanner properties for reconstruction

➢ Single scan from given direction produces regular lattice of points in X and Y 

with changing depth (Z).

➢ Take multiple scans to create complete model



Zippering range scans

Project & insert boundary vertices



Zippering range scans

Intersect boundary edges



Zippering range scans

Discard overlap region



Zippering range scans

Locally optimize triangulation



Problems & Limitations

➢ Pros:

• Preserves regular structure of each scan

• Fast, no additional data structures

➢ Cons:

➢ Lot of small “fixes” / “tricks”

➢ Problems with complex, noisy, incomplete data


