Surface Reconstruction |

USTC, 2024 Spring

Qing Fang, fg1208@mail.ustc.edu.cn
https://qingfang1208.github.io/



mailto:fq1208@mail.ustc.edu.cn
https://qingfang1208.github.io/

Introduction



Surface Reconstruction

> Rendering

> Reconstruction




Shape from ...

> Laser triangulation

Laser line
projector
Camera

Detector view
2-axis changes are observed
as pixel shifts in the camera

Projected

laser line
Object under test Arecnon
of object




Shape from ...

> Laser triangulation

> Stereo
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Shape from ...

> Laser triangulation
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Shape from data
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Applications

> Reverse engineering
> Augmented reality
> Medical Imaging

> Digital preservation




Problem

> Input: a multi-view set of points in 3D that sampled from a model surface

> Output: a 2D manifold mesh surface that closely approximates the model




Registration



Depth Image

> Resolution: width X height

> Pixels: depth value

Nearer is darker




Point clouds

> Preprocessing

. Segmentation




Point clouds

> Preprocessing
Segmentation

Camera matrix
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Registration

> Any surface reconstruction algorithm should strive to use all of the detail in all

the available range data.




Accurate registration may require

> Calibrated scanner/object positioning

> Software-based optimization

Cam%?)'tgm #11
1 Cam #12




Pairwise registration

> Source point sets: P = {p4, ..., P }

> Target point sets: Q = {q4, ..., qn}

> Find function f, s.t. minimize

E = dist*(f(P), Q)




Rigid registration

> [ isrigid transformation.
T

> Special case: {p; » q;,i = 1, ...n} Projection
Overlap

E(R,t) = X, llq; — Rp; — t]|? \ S

There is a close-form solution. " Projector

Display surfac




Rigid registration
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Rigid registration

Let PQT = USVT, as
tr(ATB)? < tr(ATA)tr(B'B)
Then
tr(RUSVT)2 = tr(SVTRU)?
< tr(SST) < tr(S5)?

Minimizer R = VUT
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Rigid registration

> f isrigid transformation.

> |terative close-point (ICP):
|dentify nearest points
Compute the optimal (R, t)

Repeat until E is small




Rigid registration

-----------



Non-rigid registration

> f is non-rigid.
> Deformation fields:

> Rigid locally




Non-rigid registration

> f is non-rigid.
> Deformation fields:
> Rigid locally

> Interpolation
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Deformation graph
Graph node:
X—p; =Ai(x —p) +t,

affine matrix 4; € R3*3,

b = Z w; (x) X
PiEN (x)
(A;(x —p;) + t; + p;)



Non-rigid registration

Elephant (329 nodes, 21k vertices)

Source Initial Alignment




Global Registration

> Given: n scans around an object

> Goal: align them all

. cam¥8'CAM #11
m#g  Cam #12

> First attempt: ICP each scan to one

other




Global Registration

> Want method for distributing accumulated error among all scans

> Methods: anl#10
I
Cam#8'Chm #11
. Set “anchor” scan - one scan covers Nl o Cam #12
most of surface

. Align each new scan to all previous

Scans




Global Registration

> Want method for distributing accumulated error among all scans

> Methods:

While not converged:

Brute-Force Solution
— For each scan:

* For each point:
— For every other scan

» Find closest point ‘this scan

— Minimize error w.r.t. transforms of all scans




Global Registration

> Want method for distributing accumulated error among all scans

> Methods:

Brute-Force Solution

Graph Methods

Find transformations consistent as — - |
Scan 4*‘\{ Scan 6

possible with all pairwise ICP




Reconstruction



Reconstruction methods

> Explicit methods

> VD and DT

> LN

> Implicit methods

A new Voronoi-based surface reconstruction algorithm



https://dl.acm.org/doi/10.1145/280814.280947

Delaunay triangulation

> 2D case
. Curve from Points o

. Which edges to choose?




Medial Axis

> Set of points with more than one

closest point on the surface. | -

2D example 3D example



Medial Axis

> Set of points with more than one

closest point on the surface.

> Locus of centers of tangentially

touch the curve in at least 2 points.




Medial Axis and VD

> Voronoi diagram of set of points on
curve approximates Medial if points

sampled densely enough.




Medial Axis and VD

> Voronoi diagram of set of points on
curve approximates Medial if points

sampled densely enough.

> r-sample : distance from any point on
surface to nearest sample point £ r X

distance from point to medial axis




ldea

> Adopt Delaunay edges which are “far”

from Media Axis

> To represent Media Axis use Voronoi

vertices

> Edge e in crust <=> circumcircle of e

contains no other sample points or

Voronoi vertices of S



2D Crust algorithm

> Compute Voronoi diagram of Sand V is

the set of Voronoi vertices.
> Compute Delaunay triangulation of SUV.

> Return all Delaunay edges between

points of S.




Theory

> Theorem:

The crust of an r-sample from a smooth curve F,

for r £0.25 connects only adjacent samples of F. STy ST Y (R P13 The crust

> Ifrislarge




Delaunay triangulation

> 2D case
Curve from Points
Which edges to choose?
> 3D case

> Shell from points
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Differences between 2D and 3D

> In 3D Voronoi cells are polyhedral

> In 3D Voronoi vertex is equidistant from

4 sample points.

> In 3D not all Voronoi vertices are near
medial axis (regardless of sampling

density)




Observation

> Some vertices of the Voronoi

cell are near medial axis.

&

> Poles-two farthest vertices of Vs

(pT(s),p~(s)) - one on each '
side of the surface. 1.1

Voronoi cell of p




3D Crust algorithm

> Compute Voronoi diagram of S

> For each s € S, identify the poles p*(s) and p~(s)
. pT(s) is the vertex of Vs most distant from s

p~(s) is the vertex of Vs most distant from s in the opposite direction
> Let P be the set of all poles and compute Delaunay triangulation Tof SU P

> Add to crust all triangles in T with vertices only in S



Post-processing

> Delete triangles whose normals differ too much from the direction

vectors from the triangle vertices to their poles




Problems & Limitations

> Sampling of points needs to be dense —Undersampling causes holes
> Problems at sharp corners
> Heuristically choosing poles

> Algorithm is slow



Reconstruction methods

> Explicit methods
> VD and DT
> Alpha shape

> LN

> Implicit methods



Alpha shape

> Convex hull V.S. alpha shape




Alpha shape

> |lce cream with solid chocolate chips
> Spherical ice spoon

> Curve out all parts of the ice cream with out

touching the chocolate chips

> Straighten all curvatures




Alpha shape

> 2D case -> 3D case

Alpha complex

Delaunay triangulation ﬁ

Simplicial complex ﬁ
k-simplex ﬁ




k — simplex

> k —simplex Ag : the convex hull of S, for any subset S € P of size |S| =

k+1

> The general position assumption : k —simplex As has exactly dimension k

=2

| \ . »
vertex A’ triangle A’ }

tetrahedron A’




Simplicial complex

> A collection C of simplices forms a simplicial

complex if it satisfies the following conditions :

For a simplex A of C, the boundary simplices of

Ag are in C.

For two simplices of C, their intersection is either

@ or a simplex in C




Alpha shape

> r-ball : an open ball with radius r
0-ball : point
co-ball : open half-space

> For given point set P, r-ball b is

emptyifbNP =0




a-exposed

> Ak —simplex Ag is a-exposed if there

exists an empty a-ball b withS =db NP

a-exposed not a-exposed

> If Ag is an a-exposed simplex of P, then

As € DT(P). T(5)
For d = 2, circumsphere of S

For d < 2, increase a until meet other point.




a-exposed

> |lce-cream spoon hits against one
or more of the pointsin P — the
simplex spanned by these points is

a-exposed




a-shape

> The boundary 05, of the a-shape of the

point set P consists of all k— simplex of P for

0 < k < d which are a-exposed

S, = {Ag|S € P,|S| < d and Ag a-exposed}




Property

> limds, =P, lim dS§, = dconv(P)

a—0 a— 00

= lim §, = P, lim §, = conv(P)
a—0 a— 00

> Forany 0 < a < o, we have ds, < DT(P)




a-complex

> Asimplex Ac€ DT(P) isin C, if
a) the circumcircle of S with radius r < a is empty or

b) itisaboundary simplex of a simplex of a)

S, = dC,




Algorithm

> Computing the Delaunay triangulation of P, knowing the boundary of a-

shape is contained in it.

> Determine C, by inspecting all simplices Ac€ DT (P). If the circumcircle of
S with radius 7 < a is empty, we accept Ag as a member of C,, together

with all its faces.

> All d-simplices of C, make up the interior of S, (P) and all simplices on the

boundary of dC, form 95,



Family of a

a = {0,0.19,0.25,0.75, o0}



Problems & Limitations

> Choosing the "best” a value is not trivial > some ot

heuristical methods \

> Not for all object’s surfaces there is a good a value

due to non-uniformly sampled data \‘e%

Interstices might be covered
Neighboring objects might be connected

Joints or sharp turns might not be sharp anymore



Reconstruction methods

> Explicit methods
> VD and DT
> Alpha shape
> Zippering range scans

> LN

> Implicit methods



ldea

> Use range scanner properties for reconstruction

> Single scan from given direction produces regular lattice of points in Xand Y

with changing depth (Z).

> Take multiple scans to create complete model



Zippering range scans

Project & insert boundary vertices



Zippering range scans

Intersect boundary edges



Zippering range scans

Discard overlap region



Zippering range scans

Locally optimize triangulation



Problems & Limitations

> Pros:
Preserves regular structure of each scan
Fast, no additional data structures
> Cons:
> Lot of small “fixes” / “tricks”

> Problems with complex, noisy, incomplete data




