Surface Reconstruction I
USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn https://aingfang1208.github.io/

Introduction

Surface Reconstruction

> Rendering

> Reconstruction

Shape from ...

- Laser triangulation

Shape from ...

> Laser triangulation
> Stereo

Shape from ...

, Laser triangulation
> Stereo
> Structured Light

Shape from data

Applications

Applications

> Reverse engineering
> Augmented reality

Applications

> Reverse engineering
> Augmented reality
, Medical Imaging

Applications

> Reverse engineering
> Augmented reality
> Medical Imaging
> Digital preservation
> ...

Problem

. Input: a multi-view set of points in 3D that sampled from a model surface
, Output: a 2D manifold mesh surface that closely approximates the model

Reconstruction

Registration

Depth Image

, Resolution: width \times height
, Pixels: depth value

- Nearer is darker

Point clouds

, Preprocessing

- Segmentation

Point clouds

, Preprocessing

- Segmentation
- Camera matrix

$$
Z\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right)=\left(\begin{array}{ccc}
f_{x} & 0 & c_{x} \\
0 & f_{y} & c_{y} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)
$$

Registration

- Any surface reconstruction algorithm should strive to use all of the detail in all the available range data.

Accurate registration may require

, Calibrated scanner/object positioning
, Software-based optimization

Pairwise registration

, Source point sets: $P=\left\{p_{1}, \ldots, p_{m}\right\}$
, Target point sets: $Q=\left\{q_{1}, \ldots, q_{n}\right\}$

- Find function f, s.t. minimize

$$
E=\operatorname{dist}^{2}(f(P), Q)
$$

Rigid registration

> f is rigid transformation.

- Special case: $\left\{p_{i} \rightarrow q_{i}, i=1, \ldots n\right\}$

$$
E(R, t)=\sum_{i=1}^{n}\left\|q_{i}-R p_{i}-t\right\|^{2}
$$

There is a close-form solution.

Rigid registration

$$
\text { Let } \bar{p}_{i}=p_{i}-\frac{1}{n} \sum_{i=1}^{n} p_{i}
$$

$$
\begin{aligned}
& E(R, t)=\sum_{i=1}^{n}\left\|q_{i}-R p_{i}-t\right\|^{2} \\
& \frac{\partial E}{\partial t}=2 \sum_{i=1}^{n}\left(q_{i}-R p_{i}-t\right)=0 \\
& \Rightarrow t=\frac{1}{n} \sum_{i=1}^{n}\left(q_{i}-R p_{i}\right)
\end{aligned}
$$

$$
\bar{q}_{i}=q_{i}-\frac{1}{n} \sum_{i=1}^{n} q_{i}
$$

$$
E(R)=\sum_{i=1}^{n}\left\|\bar{q}_{i}-R \bar{p}_{i}\right\|^{2}
$$

$$
=\|\bar{Q}-R \bar{P}\|_{F}^{2}
$$

$$
=\operatorname{tr}\left((\bar{Q}-R \bar{P})^{T}(\bar{Q}-R \bar{P})\right)
$$

$$
=C-2 \operatorname{tr}\left(R \bar{P} \bar{Q}^{T}\right)
$$

Rigid registration

$$
\text { Let } \quad \bar{p}_{i}=p_{i}-\frac{1}{n} \sum_{i=1}^{n} p_{i}
$$

Let $\bar{P} \bar{Q}^{T}=U S V^{T}$, as

$$
\operatorname{tr}\left(A^{T} B\right)^{2} \leq \operatorname{tr}\left(A^{T} A\right) \operatorname{tr}\left(B^{T} B\right)
$$

Then

$$
\begin{gathered}
\operatorname{tr}\left(R U S V^{T}\right)^{2}=\operatorname{tr}\left(S V^{T} R U\right)^{2} \\
\leq \operatorname{tr}\left(S S^{T}\right) \leq \operatorname{tr}(S)^{2}
\end{gathered}
$$

Minimizer $R=V U^{T}$

$$
\begin{gathered}
\bar{q}_{i}=q_{i}-\frac{1}{n} \sum_{i=1}^{n} q_{i} \\
\begin{aligned}
& E(R)=\sum_{i=1}^{n}\left\|\bar{q}_{i}-R \bar{p}_{i}\right\|^{2} \\
&=\|\bar{Q}-R \bar{P}\|_{F}^{2} \\
&=\operatorname{tr}\left((\bar{Q}-R \bar{P})^{T}(\bar{Q}-R \bar{P})\right) \\
&= C-2 \operatorname{tr}\left(R \bar{P} \bar{Q}^{T}\right)
\end{aligned}
\end{gathered}
$$

Rigid registration

- f is rigid transformation.
> Iterative close-point (ICP):
- Identify nearest points
- Compute the optimal (R, t)
- Repeat until E is small

Rigid registration

Non-rigid registration
> f is non-rigid.
, Deformation fields:
> Rigid locally

Non-rigid registration

> f is non-rigid.
, Deformation fields:
> Rigid locally

- Interpolation

Deformation graph Graph node:

$$
\widehat{x}-\widehat{p}_{i}=A_{i}\left(x-p_{i}\right)+t_{i},
$$

affine matrix $A_{i} \in \mathbb{R}^{3 \times 3}$.

$$
\begin{aligned}
& x=\sum_{p_{i} \in \mathcal{N}(x)} w_{i}(x) \times \\
& \left(A_{i}\left(x-p_{i}\right)+t_{i}+\widehat{p}_{i}\right)
\end{aligned}
$$

Non-rigid registration

Elephant (329 nodes, 21k vertices)

Global Registration

, Given: n scans around an object
, Goal: align them all
, First attempt: ICP each scan to one other

Global Registration

, Want method for distributing accumulated error among all scans
, Methods:

- Set "anchor" scan - one scan covers most of surface
- Align each new scan to all previous scans

Global Registration

, Want method for distributing accumulated error among all scans
, Methods:

- Brute-Force Solution

While not converged:

- For each scan:
- For each point:
- For every other scan
» Find closest point
- Minimize error w.r.t. transforms of all scans

Global Registration

- Want method for distributing accumulated error among all scans
, Methods:
- Brute-Force Solution
- Graph Methods

Find transformations consistent as possible with all pairwise ICP

Reconstruction

Reconstruction methods

, Explicit methods
> VD and DT
» ...
, Implicit methods

Delaunay triangulation

> 2D case

- Curve from Points

- Which edges to choose?

Medial Axis

, Set of points with more than one closest point on the surface.

Medial Axis

> Set of points with more than one closest point on the surface.
> Locus of centers of tangentially touch the curve in at least 2 points.

Medial Axis and VD

> Voronoi diagram of set of points on curve approximates Medial if points sampled densely enough.

Medial Axis and VD

> Voronoi diagram of set of points on curve approximates Medial if points sampled densely enough.
, r-sample : distance from any point on surface to nearest sample point $\leq r \times$ distance from point to medial axis

Idea

> Adopt Delaunay edges which are "far" from Media Axis
> To represent Media Axis use Voronoi vertices

- Edge e in crust <=> circumcircle of e contains no other sample points or Voronoi vertices of S

2D Crust algorithm

> Compute Voronoi diagram of S and V is the set of Voronoi vertices.
> Compute Delaunay triangulation of SUV.
> Return all Delaunay edges between points of S.

Theory

, Theorem:

The crust of an r-sample from a smooth curve F, for $r \leq 0.25$ connects only adjacent samples of F.
> If r is large

Delaunay triangulation

, 2D case

- Curve from Points

- Which edges to choose?
> 3D case
> Shell from points

Differences between 2D and 3D

> In 3D Voronoi cells are polyhedral

- In 3D Voronoi vertex is equidistant from 4 sample points.
, In 3D not all Voronoi vertices are near medial axis (regardless of sampling density)

Observation

- Some vertices of the Voronoi cell are near medial axis.
, Poles-two farthest vertices of Vs ($\left.p^{+}(s), p^{-}(s)\right)$ - one on each side of the surface.

3D Crust algorithm

- Compute Voronoi diagram of S
- For each $s \in \mathrm{~S}$, identify the poles $p^{+}(s)$ and $p^{-}(s)$
- $p^{+}(s)$ is the vertex of Vs most distant from s
- $p^{-}(s)$ is the vertex of Vs most distant from s in the opposite direction
> Let P be the set of all poles and compute Delaunay triangulation T of S U P
- Add to crust all triangles in T with vertices only in S

Post-processing

Delete triangles whose normals differ too much from the direction vectors from the triangle vertices to their poles

Problems \& Limitations

. Sampling of points needs to be dense -Undersampling causes holes
> Problems at sharp corners
> Heuristically choosing poles

- Algorithm is slow

Reconstruction methods

, Explicit methods
> VD and DT
, Alpha shape
, Implicit methods

Alpha shape

> Convex hull V.S. alpha shape

Alpha shape

> Ice cream with solid chocolate chips

- Spherical ice spoon
> Curve out all parts of the ice cream with out touching the chocolate chips
> Straighten all curvatures

Alpha shape

> 2D case -> 3D case

Alpha complex

Delaunay triangulation $\widehat{\digamma}$

Simplicial complex \uparrow

k-simplex \uparrow

k - simplex

» $k-\operatorname{simplex} \Delta_{S}:$ the convex hull of S, for any subset $S \subseteq P$ of size $|\mathrm{S}|=$ $k+1$
> The general position assumption : k - simplex Δ_{S} has exactly dimension k

$k=0$	$k=1$	$k=2$	$k=3$
k vertex Δ^{0}	edge Δ^{1}	triangle Δ^{2}	tettrahedron Δ^{3}

Simplicial complex

- A collection C of simplices forms a simplicial complex if it satisfies the following conditions :
- For a simplex Δ_{S} of C, the boundary simplices of Δ_{S} are in C.
- For two simplices of C , their intersection is either \emptyset or a simplex in C

Alpha shape

, r-ball : an open ball with radius r

- 0-ball : point
- ∞-ball : open half-space
, For given point set P, r-ball b is empty if $b \cap P=\emptyset$

α-exposed

> A k - simplex Δ_{S} is α-exposed if there exists an empty α-ball b with $S=\partial b \cap P$

, If Δ_{S} is an α-exposed simplex of P, then $\Delta_{S} \in D T(P)$.

For $d=2$, circumsphere of S
For $d<2$, increase α until meet other point.

α-exposed

- Ice-cream spoon hits against one or more of the points in $P \rightarrow$ the simplex spanned by these points is α-exposed

α-shape

> The boundary ∂S_{α} of the α-shape of the point set P consists of all k-simplex of P for $0 \leq k<d$ which are α-exposed $\partial S_{\alpha}=\left\{\Delta_{S}\left|S \subseteq P,|S| \leq d\right.\right.$ and $\Delta_{S} \alpha$-exposed $\}$

Property

$>\lim _{\alpha \rightarrow 0} \partial \delta_{\alpha}=P, \quad \lim _{\alpha \rightarrow \infty} \partial \delta_{\alpha}=\partial \operatorname{conv}(P)$

$$
\Rightarrow \lim _{\alpha \rightarrow 0} \delta_{\alpha}=P, \lim _{\alpha \rightarrow \infty} \delta_{\alpha}=\operatorname{conv}(P)
$$

, For any $0 \leq \alpha \leq \infty$, we have $\partial \delta_{\alpha} \subset D T(P)$

α-complex

> A simplex $\Delta_{S} \in D T(P)$ is in C_{α} if
a) the circumcircle of S with radius $r<\alpha$ is empty or
b) it is a boundary simplex of a simplex of a)

$$
\partial S_{\alpha}=\partial C_{\alpha}
$$

Algorithm

, Computing the Delaunay triangulation of P, knowing the boundary of α shape is contained in it.
, Determine C_{α} by inspecting all simplices $\Delta_{S} \in D T(P)$. If the circumcircle of S with radius $r<\alpha$ is empty, we accept Δ_{S} as a member of C_{α}, together with all its faces.

- All d-simplices of C_{α} make up the interior of $S_{\alpha}(P)$ and all simplices on the boundary of ∂C_{α} form ∂S_{α}

Family of α

$$
\alpha=\{0,0.19,0.25,0.75, \infty\}
$$

Problems \& Limitations

> Choosing the "best" α value is not trivial \rightarrow some heuristical methods

- Not for all object's surfaces there is a good α value due to non-uniformly sampled data
- Interstices might be covered
- Neighboring objects might be connected

- Joints or sharp turns might not be sharp anymore

Reconstruction methods

, Explicit methods
> VD and DT
, Alpha shape
> Zippering range scans
, Implicit methods

Idea

》 Use range scanner properties for reconstruction

- Single scan from given direction produces regular lattice of points in X and Y with changing depth (Z).
- Take multiple scans to create complete model

Zippering range scans

Project \& insert boundary vertices

Zippering range scans

Intersect boundary edges

Zippering range scans

Discard overlap region

Zippering range scans

Locally optimize triangulation

Problems \& Limitations

, Pros:

- Preserves regular structure of each scan
- Fast, no additional data structures
, Cons:
> Lot of small "fixes" / "tricks"
> Problems with complex, noisy, incomplete data

