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Reconstruction methods

> Explicit methods

> VD and DT, Alpha shape, Zippering, ...

> Implicit methods
Interior: F(x) <0
Exterior: F(x) > 0

Surface: F(x) =0

<0

>0




Implicit methods

> Two basic steps:
1. Estimate an implicit field function from data
2. Extract the zero iso-surface

F(x;) = 0 not enough, may F(x) = 0

Use normal to add off-surface points:

F(Xi +/1Tll) > ()
F(Xi —/177,1) <0




Estimating normals

> Estimate the normal vector for each point
1. Extract the k-nearest neighbor point

2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation
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Local neighborhood

> Find k nearest neighbors (kNN) of a point

Brute force: O(n) complexity

> Use BSP tree
Binary space partitioning tree
Recursively partition 3D space by planes

Tree should be balanced, put plane at median

log(n) tree levels, complexity O(log n)



BSP Closest Points

Node::dist(Point x, Scalar& dmin)
{
if (leaf_node())
for each sample point p[i]
dmin = min(dmin, dist(x, p[i]));

else
{
d = dist_to_plane(x);
if (d<0)
{
left_child->dist(x, dmin);
if (|d| < dmin) right_child->dist(x, dmin);
}
else
{
right_child->dist(x, dmin);
if (|d| < dmin) left_child->dist(x, dmin);




More Trees

Quad-tree (oct-tree) Kd-tree
Cells are squares (cubes) Cells are axis-alighed boxes



Estimating normals

> Estimate the normal vector for each point
1. Extract the k-nearest neighbor point

2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation




Principal component analysis

> Fit a plane with center ¢ and normal 71 to a set of {x4, ..., Xy}

Minimize least squares error subject to normalization constraint

2
min o (77 (3 - ¢))

: 1
Close-form solution: let ¢ = ;Zﬁo X;

set M = PPT,P = [x; — ¢, ..., x, — c], then

n is the eigenvector of M with the smallest eigenvalue




Estimating normals
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2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation




Normal Orientation

> Build graph connecting neighboring points
Edge (i, /) exists if x; € kNN (x;) or x; € kNN (x;)
> Propagate normal orientation through graph
For edge (i, ) flip 7; if i/ 7i; < 0
Fails at sharp edges/corners
> Propagate along “safe” paths
i

Build a minimum spanning tree with weights w;; = 1 — |nj n;



Reconstruction methods

> Explicit methods

> VD and DT, Alpha shape, Zippering, ...

> Implicit methods (function)

> Signed distance field

& Decision
- boundary
e of implicit

= surface

e SDF >0

[ L J
(@ SDF <0




SDF from tangent plane

> Signed distance from tangent planes

Points and normals determine local tangent planes

Use distance from closest point’s tangent plane

[ Floel
< F(Xl' + Ani) =
\F(Xi = /1nl) —



SDF from tangent plane

> Simple and efficient, but SDF is not continuous
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RECONSTRUCTION

150 SAMPLES WITH A 502 GRID




Smooth SDF Approximation

> Use radial basis functions (RBFs) to implicitly represent surface

> Function such that the value depends only on the distance from the

origin or from a center

> Sum of radial basis functions used to approximate a function

XN .~ ——
(\

Yi(x) =yP(x —¢)




Smooth SDF Approximation

> Solving equations: 2n equations, 2n variables

The on- and off-surface points are the centers c;, then
n 2n
Fe) =) wiplle ==l + ) wap(lx = (i + €l
l= 1=

,
F(x;) = Ziwilpi(xj) = ZiWﬂPi(”xj —-clp=0
F(X] ~+ Eﬁ]) = Ziwil/)i(”x]' ~+ Eﬁ] — Ci”) = €

X



Smooth SDF Approximation

> Solving equations: 2n equations, 2n variables

\O( H(\n ((:n”}_\ll ) Situiny 0( H(\H —*8“” i_ (\ll "‘gnll) {: )




RBF Basis Functions

4
> Wendland basis functions Y (r) = (1 — L) (%r + 1)

g/ +
Compactly supported in [0, g
Leads to Leads to sparse, symmetric positive-definite linear
SDF C? is smooth
But surface is not necessarily fair

Not suited for highly irregular sampling



RBF Basis Functions

~ Triharmonic basis functions Y(r) = r>
Globally supported function
Leads to dense linear system
SDF C? is smooth
Provably optimal fairness

Works well for irregular sampling



Comparison

SDF From RBF RBF
tangent plane Wendland Triharmonic



Other Radial Basis Functions

> Polyharmonic spline
- P(r) =r¥log(r), k = 2,46, ...

> P@r) =1r%k=135,..

> Multiquadratic (r) = /12 + 2
. Gaussian Y(r) = e A"

> B-Spline (compact support) Y(r) = piecewise-poly(r)



How Big is €?

Without normal length With normal length
validation validation




RBF reconstruction examples




Complexity Issues

> Solve the linear system for RBF weights
Hard to solve for large number of samples
> Compactly supported RBFs
Sparse linear system, efficient solvers
> Adaptative RBF fitting
Start with a few RBFs only

Add more RBFs in region of large error



Reconstruction methods

> Explicit methods

> VD and DT, Alpha shape, Zippering, ...

> Implicit methods (function)
> Signed distance field

> Moving least square



Moving Least Square

> Approximates a smooth surface from irregularly sampled points
> Create a local estimate of the surface at every point in space
> Implicit function is computed by local approximations

> Projection operator that projects points onto the MSL surface



Moving Least Square

> How to project e on the surface defined by the input

1. Get Neighborhood of e




Moving Least Square

> How to project e on the surface defined by the input
1. Get Neighborhood of e

2. Find a local reference plane

H = {x € R®|n' (p; — q) = 0}

Minimizing the energy

6: Smooth, positive, and Z (ﬁT(pi = q))ZH(“pi = CI”)
i

monotonically decreasing
weight function




Moving Least Square

> How to project e on the surface defined by the input
1. Get Neighborhood of e
2. Find a local reference plane

3. Find a polynomial approximation
g: H- RS
Minimizing the energy

(x;, v;): 2D coordinate of z (gx, y0) — )20(llp; — qlD
l

the projection on H




Moving Least Square

> How to project e on the surface defined by the input
1. Get Neighborhood of e
2. Find a local reference plane
3. Find a polynomial approximation

4. Projection of e

e’ =q+ g(0,0)n




Moving Least Square

> How to project e on the surface defined by the input
1. Get Neighborhood of e
2. Find a local reference plane
3. Find a polynomial approximation
4. Projection of e

5. lterateif g(0,0) > €




Moving Least Square




Reconstruction methods

> Explicit methods

> VD and DT, Alpha shape, Zippering, ...
> Implicit methods (function)

> Signed distance field

> Moving least square

> Poisson surface reconstruction (assignment 2)



Extracting the Surface

F(x) = 0 = surface

F(x) < 0 = inside

F(x) > 0 < outside




Sample the SDF
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2D: Marching Squares




3D: Marching Cubes

> Classify grid nodes as inside/outside
> Classify cell: 28 configurations
> Linear interpolation along edges

> Look-up table for patch configuration

Disambiguation more complicated



Marching Cubes

> Cell classification:
. Inside
. Outside

. Intersecting




Marching Cubes

> Cases:
256—15
Considering:
. Inversion

. Rotation




Marching Cubes

> Cases:
256—15
Considering:
Inversion

Rotation




Marching Cubes problems

> Ambiguity
. Holes
> Generates HUGE meshes

. Millions of polygons




Ambiguity
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Inversion problem

> Inversion = mismatch

> 15 cases — 23 cases
Rotation only
Always separate same color

Ambiguous faces

triangulated consistently




Ambiguity Solution

> lnversion = mismatch
> 15 cases — 23 cases @ @ @

> 8 new cases

SR
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Ambiguity Solution

> Inversion = mismatch
> 15 cases — 23 cases

> 8 new cases

No
Ambiguity




Ambiguity V.S. No Ambiguity '-_ \ Q/
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Marching Cubes Issues

id not adaptive
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