# Surface Reconstruction II

USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn

https://qingfang1208.github.io/

#### Reconstruction methods

- > Explicit methods
  - > VD and DT, Alpha shape, Zippering, ...
- > Implicit methods
  - Interior: F(x) < 0
  - Exterior: F(x) > 0
  - Surface: F(x) = 0



### Implicit methods

> Two basic steps:

1. Estimate an implicit field function from data

2. Extract the zero iso-surface

 $F(x_i) = 0$  not enough, may  $F(x) \equiv 0$ 

Use normal to add off-surface points:

 $\begin{cases} F(x_i + \lambda n_i) > 0\\ F(x_i - \lambda n_i) < 0 \end{cases}$ 



### Estimating normals

- Estimate the normal vector for each point
  - 1. Extract the k-nearest neighbor point
  - 2. Compute the best approximating tangent plane by covariance analysis
  - 3. Compute the normal orientation



### Estimating normals

- Estimate the normal vector for each point
  - 1. Extract the k-nearest neighbor point
  - 2. Compute the best approximating tangent plane by covariance analysis
  - 3. Compute the normal orientation



#### Local neighborhood

- Find k nearest neighbors (kNN) of a point
  - Brute force: O(n) complexity
- > Use BSP tree
  - Binary space partitioning tree
  - Recursively partition 3D space by planes
  - Tree should be balanced, put plane at median
  - log(n) tree levels, complexity O(log n)



#### **BSP Closest Points**

```
Node::dist(Point x, Scalar& dmin)
```

```
if (leaf_node())
for each sample point p[i]
dmin = min(dmin, dist(x, p[i]));
```

```
else
```

```
d = dist_to_plane(x);
if (d < 0)</pre>
```

left\_child->dist(x, dmin);
if (|d| < dmin) right\_child->dist(x, dmin);

```
else
```

right\_child->dist(x, dmin); if (|d| < dmin) left\_child->dist(x, dmin);



#### More Trees



Quad-tree (oct-tree) Cells are squares (cubes)



Kd-tree Cells are axis-aligned boxes

### Estimating normals

- Estimate the normal vector for each point
  - 1. Extract the k-nearest neighbor point
  - 2. Compute the best approximating tangent plane by covariance analysis
  - 3. Compute the normal orientation



#### Principal component analysis

Fit a plane with center *c* and normal  $\vec{n}$  to a set of  $\{x_1, \dots, x_k\}$ Minimize least squares error subject to normalization constraint

$$\min_{c,\vec{n}}\sum_{j=0}^{k}\left(\vec{n}^{T}(x_{j}-c)\right)^{2}$$

Close-form solution : let  $c = \frac{1}{k} \sum_{j=0}^{k} x_j$ set  $M = PP^T$ ,  $P = [x_1 - c, ..., x_k - c]$ , then  $\vec{n}$  is the eigenvector of M with the smallest eigenvalue



### Estimating normals

- Estimate the normal vector for each point
  - 1. Extract the k-nearest neighbor point
  - 2. Compute the best approximating tangent plane by covariance analysis
  - 3. Compute the normal orientation



#### Normal Orientation

- Build graph connecting neighboring points
  - Edge (i, j) exists if  $x_i \in kNN(x_j)$  or  $x_j \in kNN(x_i)$
- Propagate normal orientation through graph
  - For edge (i, j) flip  $\vec{n}_j$  if  $\vec{n}_j^T \vec{n}_i < 0$
  - Fails at sharp edges/corners
- Propagate along "safe" paths

• Build a minimum spanning tree with weights  $w_{ij} = 1 - |\vec{n}_j^T \vec{n}_i|$ 

#### Reconstruction methods

- > Explicit methods
  - > VD and DT, Alpha shape, Zippering, ...
- > Implicit methods (function)
  - Signed distance field



#### SDF from tangent plane

- Signed distance from tangent planes
  - Points and normals determine local tangent planes
  - Use distance from closest point's tangent plane

$$\begin{cases} F(x_i) = 0\\ F(x_i + \lambda n_i) = \lambda\\ F(x_i - \lambda n_i) = -\lambda \end{cases}$$



## SDF from tangent plane

Simple and efficient, but SDF is not continuous





RECONSTRUCTION WITH A 50<sup>3</sup> GRID

#### Smooth SDF Approximation

- > Use radial basis functions (RBFs) to implicitly represent surface
  - Function such that the value depends only on the distance from the origin or from a center
  - Sum of radial basis functions used to approximate a function

$$F(x) = \sum_{i} w_{i} \psi_{i}(x)$$
$$\psi_{i}(x) = \psi(x - c_{i})$$



## Smooth SDF Approximation

> Solving equations: 2n equations , 2n variables

The on- and off-surface points are the centers  $c_i$ , then

$$F(x) = \sum_{i=1}^{n} w_i \psi(\|x - x_i\|) + \sum_{i=N}^{2n} w_i \psi(\|x - (x_i + \epsilon \vec{n}_i)\|)$$

$$\begin{cases} F(x_j) = \sum_i w_i \psi_i(x_j) = \sum_i w_i \psi_i(\|x_j - c_i\|) = 0 \\ F(x_j + \epsilon \vec{n}_j) = \sum_i w_i \psi_i(\|x_j + \epsilon \vec{n}_j - c_i\|) = \epsilon \end{cases}$$

#### Smooth SDF Approximation

#### > Solving equations: 2n equations , 2n variables



#### **RBF** Basis Functions

> Wendland basis functions  $\psi(r) = \left(1 - \frac{r}{\sigma}\right)_{+}^{4} \left(\frac{4r}{\sigma} + 1\right)$ 

- Compactly supported in  $[0, \sigma]$
- Leads to Leads to sparse, symmetric positive-definite linear
- SDF  $C^2$  is smooth
- But surface is not necessarily fair
- Not suited for highly irregular sampling

#### **RBF** Basis Functions

- > Triharmonic basis functions  $\psi(r) = r^3$ 
  - Globally supported function
  - Leads to dense linear system
  - SDF  $C^2$  is smooth
  - Provably optimal fairness
  - Works well for irregular sampling

## Comparison



SDF From tangent plane

RBF Wendland RBF Triharmonic

#### Other Radial Basis Functions

- Polyharmonic spline
  - >  $\psi(r) = r^k \log(r)$ , k = 2,4,6,...
  - >  $\psi(r) = r^k, k = 1,3,5,...$
- > Multiquadratic  $\psi(r) = \sqrt{r^2 + \beta^2}$
- > Gaussian  $\psi(r) = e^{-\beta r^2}$
- > B-Spline (compact support)  $\psi(r) = \text{piecewise-poly}(r)$

## How Big is $\epsilon$ ?





Without normal length validation

With normal length validation

## RBF reconstruction examples



#### Complexity Issues

- Solve the linear system for RBF weights
  - Hard to solve for large number of samples
- Compactly supported RBFs
  - Sparse linear system, efficient solvers
- > Adaptative RBF fitting
  - Start with a few RBFs only
  - Add more RBFs in region of large error

#### Reconstruction methods

- > Explicit methods
  - > VD and DT, Alpha shape, Zippering, ...
- > Implicit methods (function)
  - > Signed distance field
  - Moving least square

- > Approximates a smooth surface from irregularly sampled points
- Create a local estimate of the surface at every point in space
- > Implicit function is computed by local approximations
- Projection operator that projects points onto the MSL surface

- How to project e on the surface defined by the input
  - 1. Get Neighborhood of e



- How to project e on the surface defined by the input
  - 1. Get Neighborhood of e
  - 2. Find a local reference plane

$$H = \{ x \in \mathbb{R}^3 | \vec{n}^T (p_i - q) = 0 \}$$

Minimizing the energy

 θ: Smooth, positive, and monotonically decreasing weight function

$$\sum_{i} \left( \vec{n}^{T} (p_{i} - q) \right)^{2} \theta(\|p_{i} - q\|)$$



- How to project e on the surface defined by the input
  - 1. Get Neighborhood of e
  - 2. Find a local reference plane
  - 3. Find a polynomial approximation

 $g \colon H \to \mathbb{R}^3$ Minimizing the energy

 $(x_i, y_i)$ : 2D coordinate of the projection on H  $\sum_{i} (g(x_i, y_i) - f_i)^2 \theta(||p_i - q||)$ 



- How to project e on the surface defined by the input
  - 1. Get Neighborhood of e
  - 2. Find a local reference plane
  - 3. Find a polynomial approximation
  - 4. Projection of e

$$e' = q + g(0,0)\vec{n}$$



- How to project e on the surface defined by the input
  - 1. Get Neighborhood of e
  - 2. Find a local reference plane
  - 3. Find a polynomial approximation
  - 4. Projection of e
  - 5. Iterate if  $g(0,0) > \epsilon$





0 170 180

#### Reconstruction methods

- Explicit methods
  - > VD and DT, Alpha shape, Zippering, ...
- > Implicit methods (function)
  - > Signed distance field
  - Moving least square
  - > Poisson surface reconstruction (assignment 2)

## Extracting the Surface



## Sample the SDF







## 2D: Marching Squares



#### 3D: Marching Cubes

- Classify grid nodes as inside/outside
- Classify cell: 2<sup>8</sup> configurations
- > Linear interpolation along edges
- > Look-up table for patch configuration
  - Disambiguation more complicated

## Marching Cubes

- > Cell classification:
  - Inside
  - Outside
  - Intersecting



## Marching Cubes

> Cases:

256→15

Considering:

- Inversion
- Rotation































## Marching Cubes

Cases:

256→15

Considering:

- Inversion
- Rotation



## Marching Cubes problems

- > Ambiguity
  - Holes
- Generates HUGE meshes
  - Millions of polygons



## Ambiguity







#### Inversion problem

- > Inversion  $\rightarrow$  mismatch
- > 15 cases  $\rightarrow$  23 cases
  - Rotation only
  - Always separate same color
  - Ambiguous faces
     triangulated consistently



## Ambiguity Solution

- > Inversion  $\rightarrow$  mismatch
- $\succ$  15 cases → 23 cases
- > 8 new cases



## Ambiguity Solution

- > Inversion  $\rightarrow$  mismatch
- $\succ$  15 cases → 23 cases
- > 8 new cases



## Ambiguity Solution

- > Inversion  $\rightarrow$  mismatch
- > 15 cases  $\rightarrow$  23 cases
- > 8 new cases







## Ambiguity V.S. No Ambiguity



## Marching Cubes Issues

- > Grid not adaptive
- Many polygons required to
   represent small features

