
Surface Reconstruction II
USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn

https://qingfang1208.github.io/

mailto:fq1208@mail.ustc.edu.cn
https://qingfang1208.github.io/

Reconstruction methods

➢ Explicit methods

➢ VD and DT, Alpha shape, Zippering, …

➢ Implicit methods

Interior: 𝐹(𝑥) < 0

Exterior: 𝐹(𝑥) > 0

Surface: 𝐹(𝑥) = 0

Implicit methods

➢ Two basic steps:

1. Estimate an implicit field function from data

2. Extract the zero iso-surface

𝐹(𝑥𝑖) = 0 not enough, may 𝐹(𝑥) ≡ 0

Use normal to add off-surface points:

ቊ
𝐹 𝑥𝑖 + 𝜆𝑛𝑖 > 0

𝐹 𝑥𝑖 − 𝜆𝑛𝑖 < 0

➢ Estimate the normal vector for each point

1. Extract the k-nearest neighbor point

2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation

Estimating normals

Estimating normals

➢ Estimate the normal vector for each point

1. Extract the k-nearest neighbor point

2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation

Local neighborhood

➢ Find k nearest neighbors (kNN) of a point

• Brute force: O(n) complexity

➢ Use BSP tree

• Binary space partitioning tree

• Recursively partition 3D space by planes

• Tree should be balanced, put plane at median

• log(n) tree levels, complexity O(log n)

BSP Closest Points

More Trees

Quad-tree (oct-tree)
Cells are squares (cubes)

Kd-tree
Cells are axis-aligned boxes

Estimating normals

➢ Estimate the normal vector for each point

1. Extract the k-nearest neighbor point

2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation

➢ Fit a plane with center 𝑐 and normal 𝑛 to a set of 𝑥1, … , 𝑥𝑘

Minimize least squares error subject to normalization constraint

Principal component analysis

 min
𝑐,𝑛

σ𝑗=0
𝑘 𝑛𝑇 𝑥𝑗 − 𝑐

2

Close-form solution : let 𝑐 =
1

𝑘
σ𝑗=0

𝑘 𝑥𝑗

set 𝑀 = 𝑃𝑃𝑇 , 𝑃 = [𝑥1 − 𝑐, … , 𝑥𝑘 − 𝑐], then

𝑛 is the eigenvector of M with the smallest eigenvalue

𝑥𝑗

➢ Estimate the normal vector for each point

1. Extract the k-nearest neighbor point

2. Compute the best approximating tangent plane by covariance analysis

3. Compute the normal orientation

Estimating normals

➢ Build graph connecting neighboring points

• Edge (𝑖, 𝑗) exists if 𝑥𝑖 ∈ 𝑘𝑁𝑁(𝑥𝑗) or 𝑥𝑗 ∈ 𝑘𝑁𝑁(𝑥𝑖)

➢ Propagate normal orientation through graph

• For edge (𝑖, 𝑗) flip 𝑛𝑗 if 𝑛𝑗
𝑇𝑛i < 0

• Fails at sharp edges/corners

➢ Propagate along “safe” paths

• Build a minimum spanning tree with weights 𝑤𝑖𝑗 = 1 − |𝑛𝑗
𝑇𝑛i|

Normal Orientation

Reconstruction methods

➢ Explicit methods

➢ VD and DT, Alpha shape, Zippering, …

➢ Implicit methods (function)

➢ Signed distance field

SDF from tangent plane

➢ Signed distance from tangent planes

• Points and normals determine local tangent planes

• Use distance from closest point’s tangent plane

൞

𝐹 𝑥𝑖 = 0

𝐹 𝑥𝑖 + 𝜆𝑛𝑖 = λ

𝐹 𝑥𝑖 − 𝜆𝑛𝑖 = −𝜆

SDF from tangent plane

➢ Simple and efficient, but SDF is not continuous

Smooth SDF Approximation

➢ Use radial basis functions (RBFs) to implicitly represent surface

➢ Function such that the value depends only on the distance from the

origin or from a center

➢ Sum of radial basis functions used to approximate a function

𝜓𝑖 𝑥 = 𝜓(𝑥 − 𝑐𝑖)

𝐹 𝑥 = ෍
𝑖
𝑤𝑖𝜓𝑖(𝑥)

Smooth SDF Approximation

➢ Solving equations: 2𝑛 equations , 2𝑛 variables

The on- and off-surface points are the centers 𝑐𝑖 , then

𝐹 𝑥 = ෍
𝑖=1

𝑛

𝑤𝑖𝜓 𝑥 − 𝑥𝑖 + ෍
𝑖=𝑁

2𝑛

𝑤𝑖𝜓(𝑥 − (𝑥𝑖 + 𝜖𝑛𝑖))

𝐹 𝑥𝑗 = ෍

𝑖
𝑤𝑖𝜓𝑖(𝑥𝑗) = ෍

𝑖
𝑤𝑖𝜓𝑖(𝑥𝑗 − 𝑐𝑖) = 0

𝐹 𝑥𝑗 + 𝜖𝑛𝑗 = ෍
𝑖

𝑤𝑖𝜓𝑖(𝑥𝑗 + 𝜖𝑛𝑗 − 𝑐𝑖) = 𝜖

Smooth SDF Approximation

➢ Solving equations: 2𝑛 equations , 2𝑛 variables

 ቐ
𝐹 𝑥𝑗 = σ𝑖 𝑤𝑖𝜓𝑖(𝑥𝑗) = σ𝑖 𝑤𝑖𝜓𝑖(𝑥𝑗 − 𝑐𝑖) = 0

𝐹 𝑥𝑗 + 𝜖𝑛𝑘 = σ𝑖 𝑤𝑖𝜓𝑖(𝑥𝑗 + 𝜖𝑛𝑗 − 𝑐𝑖) = 𝜖

RBF Basis Functions

➢ Wendland basis functions 𝜓 𝑟 = 1 −
𝑟

𝜎 +

4
(

4𝑟

𝜎
+ 1)

• Compactly supported in [0, 𝜎]

• Leads to Leads to sparse, symmetric positive-definite linear

• SDF 𝐶2 is smooth

• But surface is not necessarily fair

• Not suited for highly irregular sampling

RBF Basis Functions

➢ Triharmonic basis functions 𝜓 𝑟 = 𝑟3

• Globally supported function

• Leads to dense linear system

• SDF 𝐶2 is smooth

• Provably optimal fairness

• Works well for irregular sampling

Comparison

SDF From
tangent plane

RBF
Wendland

RBF
Triharmonic

Other Radial Basis Functions

➢ Polyharmonic spline

➢ 𝜓 𝑟 = 𝑟𝑘 log(𝑟) , 𝑘 = 2,4,6, …

➢ 𝜓 𝑟 = 𝑟𝑘 , 𝑘 = 1,3,5, …

➢ Multiquadratic 𝜓 𝑟 = 𝑟2 + 𝛽2

➢ Gaussian 𝜓 𝑟 = 𝑒−𝛽𝑟2

➢ B-Spline (compact support) 𝜓 𝑟 = piecewise-poly(𝑟)

How Big is 𝜖?

RBF reconstruction examples

Complexity Issues

➢ Solve the linear system for RBF weights

• Hard to solve for large number of samples

➢ Compactly supported RBFs

• Sparse linear system, efficient solvers

➢ Adaptative RBF fitting

• Start with a few RBFs only

• Add more RBFs in region of large error

Reconstruction methods

➢ Explicit methods

➢ VD and DT, Alpha shape, Zippering, …

➢ Implicit methods (function)

➢ Signed distance field

➢ Moving least square

Moving Least Square

➢ Approximates a smooth surface from irregularly sampled points

➢ Create a local estimate of the surface at every point in space

➢ Implicit function is computed by local approximations

➢ Projection operator that projects points onto the MSL surface

Moving Least Square

➢ How to project e on the surface defined by the input

1. Get Neighborhood of e

Moving Least Square

➢ How to project e on the surface defined by the input

1. Get Neighborhood of e

2. Find a local reference plane

𝐻 = {𝑥 ∈ ℝ3|𝑛𝑇 𝑝𝑖 − 𝑞 = 0}

Minimizing the energy

෍
𝑖

𝑛𝑇 𝑝𝑖 − 𝑞
2

𝜃(𝑝𝑖 − 𝑞)𝜃: Smooth, positive, and
monotonically decreasing

weight function

Moving Least Square

➢ How to project e on the surface defined by the input

1. Get Neighborhood of e

2. Find a local reference plane

3. Find a polynomial approximation

𝑔: 𝐻 → ℝ3

Minimizing the energy

෍
𝑖

𝑔 𝑥𝑖 , 𝑦𝑖 − 𝑓𝑖
2𝜃(𝑝𝑖 − 𝑞)𝑥𝑖 , 𝑦𝑖 : 2D coordinate of

the projection on H

Moving Least Square

➢ How to project e on the surface defined by the input

1. Get Neighborhood of e

2. Find a local reference plane

3. Find a polynomial approximation

4. Projection of e

𝑒′ = 𝑞 + 𝑔(0,0)𝑛

e′

Moving Least Square

➢ How to project e on the surface defined by the input

1. Get Neighborhood of e

2. Find a local reference plane

3. Find a polynomial approximation

4. Projection of e

5. Iterate if 𝑔 0,0 > 𝜖

e′

Moving Least Square

Reconstruction methods

➢ Explicit methods

➢ VD and DT, Alpha shape, Zippering, …

➢ Implicit methods (function)

➢ Signed distance field

➢ Moving least square

➢ Poisson surface reconstruction (assignment 2)

Extracting the Surface

Sample the SDF

2D: Marching Squares

3D: Marching Cubes

➢ Classify grid nodes as inside/outside

➢ Classify cell: 28 configurations

➢ Linear interpolation along edges

➢ Look-up table for patch configuration

• Disambiguation more complicated

Marching Cubes

➢ Cell classification:

• Inside

• Outside

• Intersecting

Marching Cubes

➢ Cases:

256→15

Considering:

• Inversion

• Rotation

Marching Cubes

➢ Cases:

256→15

Considering:

• Inversion

• Rotation

Marching Cubes problems

➢ Ambiguity

• Holes

➢ Generates HUGE meshes

• Millions of polygons

Ambiguity

Inversion problem

➢ Inversion → mismatch

➢ 15 cases → 23 cases

• Rotation only

• Always separate same color

• Ambiguous faces

triangulated consistently

Ambiguity Solution

➢ Inversion → mismatch

➢ 15 cases → 23 cases

➢ 8 new cases

Ambiguity Solution

➢ Inversion → mismatch

➢ 15 cases → 23 cases

➢ 8 new cases

Ambiguity Solution

➢ Inversion → mismatch

➢ 15 cases → 23 cases

➢ 8 new cases

Ambiguity V.S. No Ambiguity

Marching Cubes Issues

➢ Grid not adaptive

➢ Many polygons required to

represent small features

