Surface Reconstruction II
USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn https://qingfang1208.github.io/

Reconstruction methods

, Explicit methods
> VD and DT, Alpha shape, Zippering, ...
, Implicit methods

$$
\begin{aligned}
& \text { Interior: } F(x)<0 \\
& \text { Exterior: } F(x)>0 \\
& \text { Surface: } F(x)=0
\end{aligned}
$$

Implicit methods

, Two basic steps:

1. Estimate an implicit field function from data
2. Extract the zero iso-surface
$F\left(x_{i}\right)=0$ not enough, may $F(x) \equiv 0$
Use normal to add off-surface points:

$$
\left\{\begin{array}{l}
F\left(x_{i}+\lambda n_{i}\right)>0 \\
F\left(x_{i}-\lambda n_{i}\right)<0
\end{array}\right.
$$

Estimating normals

> Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Estimating normals

- Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Local neighborhood

- Find k nearest neighbors (kNN) of a point
- Brute force: O(n) complexity
, Use BSP tree
- Binary space partitioning tree
- Recursively partition 3D space by planes
- Tree should be balanced, put plane at median
- $\log (\mathrm{n})$ tree levels, complexity $\mathrm{O}(\log \mathrm{n})$

BSP Closest Points

```
Node::dist(Point x, Scalar& dmin)
{
if (leaf_node())
    for each sample point p[i]
    dmin = min(dmin, dist(x, p[i]));
    else
    {
    d = dist_to_plane(x);
    if ( }d<0\mathrm{ )
    {
        left_child->dist(x, dmin);
        if (|d| < dmin) right_child->dist(x, dmin);
    }
    else
    {
        right_child->dist(x, dmin);
        if (|d| < dmin) left_child->dist(x, dmin);
    }
}
}
```


More Trees

Quad-tree (oct-tree)
Cells are squares (cubes)

Kd-tree
Cells are axis-aligned boxes

Estimating normals

- Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Principal component analysis

, Fit a plane with center c and normal \vec{n} to a set of $\left\{x_{1}, \ldots, x_{k}\right\}$
Minimize least squares error subject to normalization constraint

$$
\min _{c, \vec{n}} \sum_{j=0}^{k}\left(\vec{n}^{T}\left(x_{j}-c\right)\right)^{2}
$$

Close-form solution : let $c=\frac{1}{k} \sum_{j=0}^{k} x_{j}$
set $M=P P^{T}, P=\left[x_{1}-c, \ldots, x_{k}-c\right]$, then
\vec{n} is the eigenvector of M with the smallest eigenvalue

Estimating normals

> Estimate the normal vector for each point

1. Extract the k-nearest neighbor point
2. Compute the best approximating tangent plane by covariance analysis
3. Compute the normal orientation

Normal Orientation

- Build graph connecting neighboring points
- Edge (i, j) exists if $x_{i} \in k N N\left(x_{j}\right)$ or $x_{j} \in \operatorname{kNN}\left(x_{i}\right)$
, Propagate normal orientation through graph
- For edge (i, j) flip \vec{n}_{j} if $\vec{n}_{j}^{T} \vec{n}_{\mathrm{i}}<0$
- Fails at sharp edges/corners
- Propagate along "safe" paths
- Build a minimum spanning tree with weights $w_{i j}=1-\left|\vec{n}_{j}^{T} \vec{n}_{\mathrm{i}}\right|$

Reconstruction methods

, Explicit methods
> VD and DT, Alpha shape, Zippering, ...
> Implicit methods (function)

- Signed distance field

SDF from tangent plane

> Signed distance from tangent planes

- Points and normals determine local tangent planes
- Use distance from closest point's tangent plane

$$
\left\{\begin{array}{c}
F\left(x_{i}\right)=0 \\
F\left(x_{i}+\lambda n_{i}\right)=\lambda \\
F\left(x_{i}-\lambda n_{i}\right)=-\lambda
\end{array}\right.
$$

SDF from tangent plane

- Simple and efficient, but SDF is not continuous

Smooth SDF Approximation

, Use radial basis functions (RBFs) to implicitly represent surface

- Function such that the value depends only on the distance from the origin or from a center
- Sum of radial basis functions used to approximate a function

Smooth SDF Approximation

, Solving equations: $2 n$ equations , $2 n$ variables
The on- and off-surface points are the centers c_{i}, then

$$
\begin{aligned}
& F(x)=\sum_{i=1}^{n} w_{i} \psi\left(\left\|x-x_{i}\right\|\right)+\sum_{i=N}^{2 n} w_{i} \psi\left(\left\|x-\left(x_{i}+\epsilon \vec{n}_{i}\right)\right\|\right) \\
& \left\{\begin{array}{c}
F\left(x_{j}\right)=\sum_{i} w_{i} \psi_{i}\left(x_{j}\right)=\sum_{i} w_{i} \psi_{i}\left(\left\|x_{j}-c_{i}\right\|\right)=0 \\
F\left(x_{j}+\epsilon \vec{n}_{j}\right)=\sum_{i} w_{i} \psi_{i}\left(\left\|x_{j}+\epsilon \vec{n}_{j}-c_{i}\right\|\right)=\epsilon
\end{array}\right.
\end{aligned}
$$

Smooth SDF Approximation

> Solving equations: $2 n$ equations , $2 n$ variables

RBF Basis Functions

, Wendland basis functions $\psi(r)=\left(1-\frac{r}{\sigma}\right)_{+}^{4}\left(\frac{4 r}{\sigma}+1\right)$

- Compactly supported in $[0, \sigma]$
- Leads to Leads to sparse, symmetric positive-definite linear
- SDF C^{2} is smooth
- But surface is not necessarily fair
- Not suited for highly irregular sampling

RBF Basis Functions

> Triharmonic basis functions $\psi(r)=r^{3}$

- Globally supported function
- Leads to dense linear system
- SDF C^{2} is smooth
- Provably optimal fairness
- Works well for irregular sampling

Comparison

SDF From
tangent plane

RBF
Wendland

RBF

Triharmonic

Other Radial Basis Functions

, Polyharmonic spline
> $\psi(r)=r^{k} \log (r), k=2,4,6, \ldots$
$\psi(r)=r^{k}, k=1,3,5, \ldots$
> Multiquadratic $\psi(r)=\sqrt{r^{2}+\beta^{2}}$
, Gaussian $\psi(r)=e^{-\beta r^{2}}$
> B-Spline (compact support) $\psi(r)=$ piecewise-poly (r)

How Big is ϵ ?

Without normal length validation

With normal length validation

RBF reconstruction examples

Complexity Issues

> Solve the linear system for RBF weights

- Hard to solve for large number of samples
, Compactly supported RBFs
- Sparse linear system, efficient solvers
> Adaptative RBF fitting
- Start with a few RBFs only
- Add more RBFs in region of large error

Reconstruction methods

, Explicit methods
, VD and DT, Alpha shape, Zippering, ...
> Implicit methods (function)
> Signed distance field
> Moving least square

Moving Least Square

, Approximates a smooth surface from irregularly sampled points

- Create a local estimate of the surface at every point in space
> Implicit function is computed by local approximations
- Projection operator that projects points onto the MSL surface

Moving Least Square

- How to project e on the surface defined by the input

1. Get Neighborhood of e

Moving Least Square

, How to project e on the surface defined by the input

1. Get Neighborhood of e
2. Find a local reference plane

$$
H=\left\{x \in \mathbb{R}^{3} \mid \vec{n}^{T}\left(p_{i}-q\right)=0\right\}
$$

Minimizing the energy
θ : Smooth, positive, and monotonically decreasing weight function

$$
\sum_{i}\left(\vec{n}^{T}\left(p_{i}-q\right)\right)^{2} \theta\left(\left\|p_{i}-q\right\|\right)
$$

Moving Least Square

- How to project e on the surface defined by the input

1. Get Neighborhood of e
2. Find a local reference plane
3. Find a polynomial approximation

$$
g: H \rightarrow \mathbb{R}^{3}
$$

Minimizing the energy

$$
\sum_{i}\left(g\left(x_{i}, y_{i}\right)-f_{i}\right)^{2} \theta\left(\left\|p_{i}-q\right\|\right)
$$

Moving Least Square

- How to project e on the surface defined by the input

1. Get Neighborhood of e
2. Find a local reference plane
3. Find a polynomial approximation
4. Projection of e

$$
e^{\prime}=q+g(0,0) \vec{n}
$$

Moving Least Square

- How to project e on the surface defined by the input

1. Get Neighborhood of e
2. Find a local reference plane
3. Find a polynomial approximation
4. Projection of e
5. Iterate if $g(0,0)>\epsilon$

Moving Least Square

Reconstruction methods

, Explicit methods
» VD and DT, Alpha shape, Zippering, ...
> Implicit methods (function)
> Signed distance field
> Moving least square
> Poisson surface reconstruction (assignment 2)

Extracting the Surface

Sample the SDF

2D: Marching Squares

3D: Marching Cubes

> Classify grid nodes as inside/outside
, Classify cell: 2^{8} configurations
> Linear interpolation along edges
, Look-up table for patch configuration

- Disambiguation more complicated

Marching Cubes

, Cell classification:

- Inside
- Outside
- Intersecting

Marching Cubes

, Cases:

$$
256 \rightarrow 15
$$

Considering:

- Inversion
- Rotation

Marching Cubes

, Cases:
$256 \rightarrow 15$

Considering:

- Inversion
- Rotation

Marching Cubes problems

> Ambiguity

- Holes
> Generates HUGE meshes
- Millions of polygons

Ambiguity

Separate pink

Inversion problem

> Inversion \rightarrow mismatch
> 15 cases $\rightarrow 23$ cases

- Rotation only
- Always separate same color
- Ambiguous faces
triangulated consistently

Ambiguity Solution

, Inversion \rightarrow mismatch
, 15 cases $\rightarrow 23$ cases
> 8 new cases

Ambiguity Solution

, Inversion \rightarrow mismatch
, 15 cases $\rightarrow 23$ cases
> 8 new cases

Ambiguity Solution

, Inversion \rightarrow mismatch
, 15 cases $\rightarrow 23$ cases
> 8 new cases

Ambiguity V.S. No Ambiguity

Marching Cubes Issues

> Grid not adaptive

- Many polygons required to represent small features

