Delaunay Triangulations \& Voronoi Diagram

USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn https://qingfang1208.github.io/

Delaunay Triangulations

Convex polygon

, A set $P \subset \mathbb{R}^{2}$ is convex if $p q \in P, \forall p, q \in P$.
> For every line $l \in \mathbb{R}^{2}$, the intersection $l \cap P$ is connected

Convex hull

» $\operatorname{conv}(P)$: convex hull of a finite point set $P \subset \mathbb{R}^{2}$
> vertex of $\operatorname{conv}(P): p \notin \operatorname{conv}(P \backslash\{p\})$

Trivial algorithms of Convex hull

, Carathéodory's Theorem

- Test for every point $p \in P$ whether there are $q, r, s \in P \backslash\{p\}$ such that p is inside the triangle with vertices q, r, and s.
- Runtime $O\left(n^{4}\right)$.
> The Separation Theorem:
- Test for every pair $(p, q) \in P^{2}$ whether all points from $P \backslash\{p, q\}$ are to the left of the directed line through p and q (or on the line segment $\overline{p q}$).
- Runtime $O\left(n^{3}\right)$.

Triangulation of a point set

> A triangulation should partition the convex hull while respecting the points in the interior

(b) Point set triangulation.

(c) Not a triangulation.

Definition

> A triangulation of a finite point set $P \subset$ \mathbb{R}^{2} is a collection \mathcal{T} of triangles, such that:

- $\operatorname{conv}(P)=\mathrm{U}_{T \in \mathcal{T}} T$
- $P=\mathrm{U}_{T \in T} V(T)$
- For every distinct pair $S, T \in \mathcal{T}$, the intersection $S \cap T$ is either a common vertex, or a common edge, or empty

(b) Point set triangulation.

Various triangulations

Delaunay triangulation

> $D T(P)$: no point in P is inside the circumcircle of any triangle in $D T(P)$.

Delaunay triangulation

> $D T(P)$: no point in P is inside the circumcircle of any triangle in $D T(P)$.
> DT maximizes the smallest angle.

The Lawson Flip algorithm

, Edge flip (four points in convex position)

The Lawson Flip algorithm

> Edge flip (four points in convex position)
> Loop in all subtriangulations of four points in convex position.

Theorem

Let $P \subset \mathbb{R}^{2}$ be a set of n points, equipped with some triangulation \mathcal{J}. The Lawson flip algorithm terminates after at most $\binom{n}{2}=O\left(n^{2}\right)$ flips, and the resulting triangulation is a DT of P.

Two-step proof:

1. The program described above always terminates.
2. The algorithm does what it claims to do, namely the result is a DT.

The Lifting Map

, Given a point $p=(x, y) \in \mathbb{R}^{2}$, its lifting $l(p)$ is the point

$$
l(p)=\left(x, y, x^{2}+y^{2}\right) \in \mathbb{R}^{3}
$$

Unit paraboloid

Property

, Lemma: Let $C \subset \mathbb{R}^{2}$ be a circle of positive radius. The "lifted circle" $l(C)=$ $\{l(p), p \in C\}$ is contained in a unique plane $h(C) \subset \mathbb{R}^{3}$.

$$
\text { Proof : } l(p)=\left(x+r \cos t, y+r \sin t, x^{2}+y^{2}+r^{2}+2 x r \cos t+2 y r \sin t\right)
$$

$$
\text { Let } q=\left(x, y, x^{2}+y^{2}+r^{2}\right) \text {, then }
$$

$$
\langle l(p)-q,(2 x, 2 y,-1)\rangle=0
$$

Property

, Lemma: Let $C \subset \mathbb{R}^{2}$ be a circle of positive radius. The "lifted circle" $l(C)=$ $\{l(p), p \in C\}$ is contained in a unique plane $h(C) \subset \mathbb{R}^{3}$.

- A point $p \in \mathbb{R}^{2}$ is strictly inside (outside, respectively) of C if and only if $l(p)$ is strictly below (above, respectively) $h(C)$.

Termination

> A Lawson flip can therefore be interpreted as an operation that replaces the top two triangles of a tetrahedron by the bottom two ones.

(a) Before the flip: the top two triangles of the tetrahedron and the corresponding nonDelaunay triangulation in the plane.

(b) After the flip: the bottom two triangles of the tetrahedron and the corresponding Delaunay triangulation in the plane.

Termination

> Lawson flips decrease the height of the lifted image of triangulation.
> Once an edge has been flipped, it will be strictly above the resulting surface and never be flipped a second time.
, n points span at most $\binom{n}{2}$ edges

The result is a DT

, Locally Delaunay: Let Δ, Δ^{\prime} be two adjacent triangles in the triangulation D that results from the Lawson flip algorithm. Then the circumcircle of Δ does not have any vertex of Δ^{\prime} in its interior, and vice versa.

The result is a DT

, Locally Delaunay \Leftrightarrow globally Delaunay

Proof: all piars $\{(\Delta, p), p \in C(\Delta)\}$. Selete the pair with minimum $\operatorname{dist}(p, \Delta)$

(a) A point p inside the circumcircle C of a triangle Δ.

(b) The edge e of Δ closest to p and the second triangle Δ^{\prime} incident to e.

(c) The circumcircle C^{\prime} of Δ^{\prime} also contains p, and p is closer to Δ^{\prime} than to Δ.

Maximize the minimum angle

> If there is a long and skinny triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle in every triangulation of the point set.

Maximize the minimum angle

> A flip replaces six interior angles by six other interior angles, and we will actually show that the smallest of the six angles strictly increases under the flip.

Before the flip:

$$
\alpha_{1}+\alpha_{2}, \alpha_{3}, \alpha_{4}, \underline{\alpha_{1}}, \underline{\alpha_{2}}, \overline{\alpha_{3}}+\overline{\alpha_{4}}
$$

After the flip:

$$
\begin{array}{r}
\alpha_{1}, \alpha_{2}, \overline{\alpha_{3}}, \overline{\alpha_{4}}, \underline{\alpha_{1}}+\alpha_{4}, \underline{\alpha_{2}}+\alpha_{3} \\
\alpha_{1}>\alpha_{1}, \alpha_{2}>\underline{\alpha_{2}}, \overline{\alpha_{3}}>\alpha_{3}, \overline{\alpha_{4}}>\alpha_{4}
\end{array}
$$

$$
\underline{\alpha_{1}}+\alpha_{4}>\alpha_{4}, \underline{\alpha_{2}}+\alpha_{3}>\alpha_{3}
$$

DT is not always a good mesh

> DT only optimize the connectivity as points are fixed.

- Need to optimize vertex positions simultaneously.

Optimal Delaunay triangulation(ODT)

> Fix $P \subset \mathbb{R}^{2}$, optimize \mathcal{T} s.t. lifted picewise linear image close to unit paraboloid.
> Fix \mathcal{T}, optimize $P \subset \mathbb{R}^{2}$ s.t. lifted picewise linear image close to unit paraboloid.

Optimal Delaunay triangulation(ODT)

> $u(p)=x^{2}+y^{2}$ and $\hat{u}(p):$ piecewise linear interpolation
$\rangle E=\sum_{T \in \mathcal{T}} \int_{T}|\widehat{u}(p)-u(p)| d p=\sum_{T \in \mathcal{T}} \int_{T} \widehat{u}(p) d p+C$

$$
=\sum_{T_{i j k} \in \mathcal{T}} \frac{\left|T_{i j k}\right|}{3}\left(u\left(p_{i}\right)+u\left(p_{j}\right)+u\left(p_{k}\right)\right)+C
$$

Fix all other points except p_{i} :

$$
\nabla_{p_{i}} E=\sum_{T_{i j k} \in \Omega_{i}} \frac{\nabla_{p_{i}}\left|T_{i j k}\right|}{3}\left(u\left(p_{i}\right)+u\left(p_{j}\right)+u\left(p_{k}\right)\right)+\sum_{T_{i j k} \in \Omega_{i}} \frac{\left|T_{i j k}\right|}{3} \nabla_{p_{i}} u\left(p_{i}\right)=0
$$

Property of $\nabla_{p_{i}}\left|T_{i j k}\right|$

$>$ Property 1. $\sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{i}}\left|T_{i j k}\right|=0$
Proof: $\sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{i}}\left|T_{i j k}\right|=\nabla_{p_{i}} \Sigma_{T_{i j k} \in \Omega_{i}}\left|T_{i j k}\right|=\nabla_{p_{i}} C=0$

Property of $\nabla_{p_{i}}\left|T_{i j k}\right|$

> Property 2. for p_{i}, p_{l} in one side of $\overline{p_{j} p_{k}}, \nabla_{p_{i}}\left|T_{i j k}\right|=\nabla_{p_{l}}\left|T_{l j k}\right|$ for p_{i}, p_{l} in different sides of $\overline{p_{j} p_{k}}, \nabla_{p_{i}}\left|T_{i j k}\right|=-\nabla_{p_{l}}\left|T_{l k j}\right|$

Proof: denote $r(v)=e^{\frac{\pi}{2} i} v$ represents the 90° degree anticlockwise rotation.
Then, $\nabla_{p_{i}}\left|T_{i j k}\right|=\frac{1}{2} r\left(p_{k}-p_{j}\right), \nabla_{p_{l}}\left|T_{l k j}\right|=\frac{1}{2} r\left(p_{j}-p_{k}\right)$.

Property of $\nabla_{p_{i}}\left|T_{i j k}\right|$
, Property 3. for the triangle $T_{i j k}, \nabla_{p_{i}}\left|T_{i j k}\right|+\nabla_{p_{j}}\left|T_{i j k}\right|+\nabla_{p_{k}}\left|T_{i j k}\right|=0$
Proof:

$$
\begin{aligned}
& \nabla_{p_{i}}\left|T_{i j k}\right|+\nabla_{p_{j}}\left|T_{i j k}\right|+\nabla_{p_{k}}\left|T_{i j k}\right| \\
= & \frac{1}{2} r\left(p_{k}-p_{j}\right)+\frac{1}{2} r\left(p_{i}-p_{k}\right)+\frac{1}{2} r\left(p_{j}-p_{i}\right)=0 .
\end{aligned}
$$

Optimal Delaunay triangulation(ODT)

Fix all other points except p_{i} :

$$
\nabla_{p_{i}} E=\sum_{T_{i j k} \in \Omega_{i}} \frac{\nabla_{p_{i}}\left|T_{i j k}\right|}{3}\left(u\left(p_{i}\right)+u\left(p_{j}\right)+u\left(p_{k}\right)\right)+\sum_{T_{i j k} \in \Omega_{i}} \frac{\left|T_{i j k}\right|}{3} \nabla_{p_{i}} u\left(p_{i}\right)=0
$$

$$
\text { As } \nabla_{p_{i}} u\left(p_{i}\right)=\nabla_{p_{i}}\left\|p_{i}\right\|^{2}=2 p_{i} \text {, denote }\left|\Omega_{i}\right| \triangleq \sum_{T_{i j k} \in \Omega_{i}} \frac{\left|T_{i j k}\right|}{3},
$$

$$
p_{i}^{*}=-\sum_{T_{i j k} \in \Omega_{i}} \frac{\nabla_{p_{i}}\left|T_{i j k}\right|}{6\left|\Omega_{i}\right|}\left(u\left(p_{j}\right)+u\left(p_{k}\right)\right)=\sum_{T_{i j k} \in \Omega_{i}} \frac{\nabla_{p_{j}}\left|T_{i j k}\right|+\nabla_{p_{k}}\left|T_{i j k}\right|}{6\left|\Omega_{i}\right|}\left(u\left(p_{j}\right)+u\left(p_{k}\right)\right)
$$

Optimal Delaunay triangulation(ODT)

$$
\begin{aligned}
p_{i}^{*} & =-\sum_{T_{i j k} \in \Omega_{i}} \frac{\nabla_{p_{i}}\left|T_{i j k}\right|}{6\left|\Omega_{i}\right|}\left(u\left(p_{j}\right)+u\left(p_{k}\right)\right)=\sum_{T_{i j k} \in \Omega_{i}} \frac{\nabla_{p_{j}}\left|T_{i j k}\right|+\nabla_{p_{k}}\left|T_{i j k}\right|}{6\left|\Omega_{i}\right|}\left(u\left(p_{j}\right)+u\left(p_{k}\right)\right) \\
p_{i}^{*} & =\frac{1}{6\left|\Omega_{i}\right|} \sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{i j k}\right| u\left(p_{j}\right)+\nabla_{p_{j} \mid}\left|T_{i j k}\right| u\left(p_{k}\right)+\nabla_{p_{k}}\left|T_{i j k}\right| u\left(p_{j}\right)+\nabla_{p_{k}}\left|T_{i j k}\right| u\left(p_{k}\right) \\
& =\frac{1}{6\left|\Omega_{i}\right|} \sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{i j k}\right| u\left(p_{j}\right)+\nabla_{p_{k}}\left|T_{i j k}\right| u\left(p_{k}\right)
\end{aligned}
$$

Optimal Delaunay triangulation(ODT)

We prove p_{i}^{*} is the barycenter c_{i} of Ω_{i}

$$
p_{i}^{*}=\frac{1}{6\left|\Omega_{i}\right|} \sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{i j k}\right| u\left(p_{j}\right)+\nabla_{p_{k}}\left|T_{i j k}\right| u\left(p_{k}\right)
$$

Lemma: for $\forall q \in \mathbb{R}^{2}$, let $v(p) \triangleq\|p-q\|^{2}=u(p)+\|q\|^{2}-2 q^{T} p$, for each $T, \hat{v}(p)-v(p)=\widehat{u}(p)-u(p)$. Then

$$
E=\sum_{T \in \mathcal{T}} \int_{T}|\hat{v}(p)-v(p)| d p=\sum_{T \in \mathcal{T}} \int_{T} \hat{v}(p) d p+C
$$

Optimal Delaunay triangulation(ODT)

Fix all other points except $p_{i}, \nabla_{p_{i}} v\left(p_{i}\right)=2\left(p_{i}-q\right)$, similarly

$$
p_{i}^{*}=q+\frac{1}{6\left|\Omega_{i}\right|} \sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{i j k}\right|\left\|p_{j}-q\right\|^{2}+\nabla_{p_{k}}\left|T_{i j k}\right|\left\|p_{k}-q\right\|^{2}
$$

We consider a special Ω_{l}, let $q=c_{l}$.
Due to $\sum_{T_{l j k} \in \Omega_{l}} \nabla_{p_{l}}\left|T_{l j k}\right|=0$, then $p_{l}^{*}=c_{l}$.

Optimal Delaunay triangulation(ODT)

Let $q=p_{i}$, then

$$
\begin{aligned}
& c_{l}=q+\frac{1}{6\left|\Omega_{l}\right|} \Sigma_{T_{l j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{l j k}\right|\left\|p_{j}-q\right\|^{2}+\nabla_{p_{k}}\left|T_{l j k}\right|\left\|p_{k}-q\right\|^{2} \\
& \Rightarrow c_{l}=p_{i}+\frac{1}{6 \Omega_{l} \|}\left(\nabla _ { p _ { j } j } \left|T_{i j k}\| \| p_{j}-p_{i}\left\|^{2}+\nabla_{p_{k}}\left|T_{j j k}\right|\right\| p_{k}-p_{i} \|^{2}\right.\right. \\
& \left.+\nabla_{p_{k}}\left|T_{k i}\right|\left\|p_{k}-p_{i}\right\|^{2}+\nabla_{p_{j}}\left|T_{i j}\right|\left\|p_{j}-p_{i}\right\|^{2}\right)
\end{aligned}
$$

Optimal Delaunay triangulation(ODT)

$$
\begin{aligned}
& c_{l}=p_{i}+\frac{1}{6\left|Q_{i}\right|}\left(\nabla _ { p _ { j } j } \left|T _ { l j k } \left\|\left|p_{j}-p_{i}\left\|^{2}+\nabla_{p_{k}}\left|T_{i j k}\right|\right\| p_{k}-p_{i} \|^{2}\right.\right.\right.\right. \\
& +\nabla_{p_{k}}\left|T_{l k i}\| \| p_{k}-p_{i}\left\|^{2}+\nabla_{p_{j}}\left|T_{i j}\right|\right\| p_{j}-p_{i} \|^{2}\right) \\
& c_{l}=p_{i}+\frac{1}{6 \Omega_{l} \mid}\left(\left(\nabla_{p_{k}}\left|T_{l j k}\right|+\nabla_{p_{k}} \mid T_{u_{k}}\right) \mid\right)\left|p_{k}-p_{i}\left\|^{2}+\left(\nabla_{p j}\left|T_{i j l}\right|+\nabla_{p_{j}}\left|T_{i j j}\right|\right) \mid p_{j}-p_{i}\right\|^{2}\right) \\
& =p_{i}+\frac{1}{2\left|T_{i j k}\right|}\left(\nabla_{p_{k}}\left|T_{i j k}\right|\left\|p_{k}-p_{i}\right\|^{2}+\nabla_{p_{j}} \mid T_{i j k}\| \| p_{j}-p_{i} \|^{2}\right) \\
& \Rightarrow \nabla_{p_{k} k}\left|T_{i j k}\right|\left\|p_{k}-p_{i}\right\|^{2}+\nabla_{p_{j}}\left|T_{i j k}\right|\left\|p_{j}-p_{i}\right\|^{2}=2\left|T_{i j k}\right|\left(c_{l}-p_{i}\right)
\end{aligned}
$$

Optimal Delaunay triangulation(ODT)

$$
\text { General case: } p_{i}^{*}=q+\frac{1}{6\left|\Omega_{i}\right|} \Sigma_{T_{i j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{i j k}\right|\left\|p_{j}-q\right\|^{2}+\nabla_{p_{k}}\left|T_{i j k}\right|\left\|p_{k}-q\right\|^{2}
$$

Let $q=p_{i}$, then $p_{i}^{*}=p_{i}+\frac{1}{6\left|\Omega_{i}\right|} \sum_{T_{i j k} \in \Omega_{i}} \nabla_{p_{j}}\left|T_{i j k}\right|\left\|p_{j}-p_{i}\right\|^{2}+\nabla_{p_{k}}\left|T_{i j k}\right|\left\|p_{k}-p_{i}\right\|^{2}$
Then $p_{i}^{*}=p_{i}+\frac{1}{6\left|\Omega_{i}\right|} \Sigma_{T_{i j k} \in \Omega_{i}} 2\left|T_{i j k}\right|\left(c_{i j k}-p_{i}\right)=c_{i}$

Basic algorithm

> Fix $P \subset \mathbb{R}^{2}$, optimize \mathcal{T} s.t. lifted picewise linear image close to unit paraboloid.
» Fix \mathcal{T}, optimize $P \subset \mathbb{R}^{2}$ s.t. lifted picewise linear image close to unit paraboloid.
For iter = 1 , ... , maxlter
For vertex id $\mathrm{i}=1$, ... , n

$$
P_{i} \leftarrow \text { barycenter } c_{i} \text { of } \Omega_{i}
$$

End

End

Generalization

$>$ Non uniform density: $E=\sum_{T \in \mathcal{T}} \int_{T}|\hat{u}(x)-u(x)| \rho(x) d x$

- Any convex functionu, i.e. $u(x, y)=e^{\frac{\left(x^{2}+y^{2}\right)}{10}}, \Omega=[-5,5]^{2}$

Voronoi Diagram

Post Office Problem

> Suppose there are n post offices p_{1}, \ldots, p_{n} in a city.
> Someone who is located at a position q within the city would like to know which post office is closest to him.

Post Office Problem

> Query in loops (low efficiency)
> Basic idea:

- Partition the query space into regions on which is the answer is the same.
- In our case, this amounts to partition the plane into regions such that for all points within a region the same point from P is closest.

Post Office Problem

Voronoi

faces of the Voronoi diagram

Post Office Problem

Voronoi

faces of the Voronoi diagram

Post Office Problem

Voronoi

Post Office Problem

Voronoi

Voronoi cell

, Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\}$ of points in \mathbb{R}^{2}, for $p_{i} \in P$ denote the Voronoi cell $V P(i)$ of p_{i} by

$$
V P(i) \triangleq\left\{q \in \mathbb{R}^{2},\left\|q-p_{i}\right\| \leq\|q-p\|, \forall p \in P\right\}
$$

Property:

- $V P(i)=\cap_{j \neq i} H\left(p_{i}, p_{j}\right)$
- $V P(i)$ is non-empty and convex.
- $V P(i)$ form a subdivision of the plane.

Lemma 1

> For every vertex $v \in V V(P)$ the following statements hold.

1) v is the common intersection of at least three edges from $V E(P)$;
2) v is incident to at least three regions from $V R(P)$; Proof:
As all Voronoi cells are convex, each interior angle is less than π, thus $k \geq 3$ of them must be incident to v.

Lemma 1

> For every vertex $v \in V V(P)$ the following statements hold.

1) v is the common intersection of at least three edges from $V E(P)$;
2) v is incident to at least three regions from $V R(P)$;
3) v is the center of a circle $C(v)$ through at least three points from P and $C(v)^{\circ} \cap P=\emptyset$;

Suppose there exists a point $p_{l} \in C(v)^{\circ}$. Then the vertex v is closer to p_{l} than it is to any of p_{1}, \ldots, p_{k}, in contradiction to $v \in V P(i), i=1, \ldots, k$.

Lemma 2

> There is an unbounded Voronoi edge bounding $V P(i)$ and $V P(j) \Leftrightarrow \overline{p_{i} p_{j}} \cap P=\left\{p_{i}, p_{j}\right\}$ and $\overline{p_{i} p_{j}} \in$ $\partial \operatorname{conv}(P)$ where the latter denotes the boundary of the convex hull of P.

Proof: There is an unbounded Voronoi edge bounding $V P(i)$ and $V P(j) \Leftrightarrow$ there is a ray $\rho \subset b_{i, j}$ such that $\left\|r-p_{k}\right\|>\left\|r-p_{i}\right\|\left(=\left\|r-p_{j}\right\|\right), \forall r \in \rho$ and $p_{k} \in$ $P \backslash\left\{p_{i}, p_{j}\right\}$. Equivalently, there is a ray $\rho \subset b_{i, j}$ such that for every point $r \in \rho$ the circle $C \in D$ centered at r does not contain any point from P in its interior.

Duality

- A straight-line dual of a plane graph G is a graph G^{\prime} defined as follows:
choose a point for each face of G and connect any two such points by a straight edge, if the corresponding faces share an edge of G

Delaunay triangulation

, Theorem: The straight-line dual of $V D(P)$ for a set $P \subset \mathbb{R}^{2}$ of $n>3$ points in general position (no three points from P are collinear and no four points from P are cocircular) is a triangulation: the unique Delaunay triangulation of P.

Proof: \Rightarrow

1. convex hull
2. Triangles
3. Empty circle property

Proof: \Leftarrow

1. Circumcenter is selected for each face.
2. Empty circle property.

Centroidal Voronoi tessellations (CVT)
> Update vertices

Definition - CVT

> A class of Voronoi tessellations where each site coincides with the centroid (i.e., center of mass) of its Voronoi region.

$$
c_{i}=\frac{\int_{V_{i}} x \rho(x) d x}{\int_{V_{i}} \rho(x) d x}
$$

Applications - Remeshing

(a)

(b)

(c)

Energy function

$$
E\left(p_{1}, \ldots, p_{n}, V_{1}, \ldots, V_{n}\right)=\sum_{i=1}^{n} \int_{V_{i}}\left\|x-p_{i}\right\|^{2} d x
$$

> For a fixed set of sites $P=\left\{p_{1}, \ldots, p_{n}\right\}$, the energy function is minimized if $\left\{V_{1}, \ldots, V_{n}\right\}$ is a Voronoi tessellation.
, For the fixed regions, the p_{i} are the mass centroids c_{i} of their corresponding regions V_{i}.

Lloyd iteration

- Construct the Voronoi tessellation corresponding to the sites p_{i}.
, Compute the centroids c_{i} of of the Voronoi regions V_{i} and move the sites p_{i} to their respective centroids c_{i}.
> Repeat above steps until satisfactory convergence is achieved.

Lloyd iteration

Iteration 00

