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Delaunay Triangulations



Convex polygon

➢ A set 𝑃 ⊂ ℝ2 is convex if 𝑝𝑞∈ 𝑃, ∀𝑝, 𝑞∈ 𝑃.

➢ For every line 𝑙 ∈ ℝ2, the intersection 𝑙 ∩ 𝑃 is connected



Convex hull

➢ 𝑐𝑜𝑛𝑣(𝑃) : convex hull of a finite point set 𝑃 ⊂ ℝ2

➢ vertex of 𝑐𝑜𝑛𝑣(𝑃) : 𝑝 ∉ 𝑐𝑜𝑛𝑣(𝑃 \ {𝑝})



Trivial algorithms of Convex hull

➢ Carathéodory’s Theorem

• Test for every point 𝑝∈ 𝑃 whether there are 𝑞, 𝑟, 𝑠∈ 𝑃 ∖ {𝑝} such that 𝑝 is 

inside the triangle with vertices 𝑞, 𝑟, and 𝑠. 

• Runtime 𝑂(𝑛4).

➢ The Separation Theorem:

• Test for every pair (𝑝, 𝑞) ∈ 𝑃2 whether all points from 𝑃 ∖{𝑝, 𝑞} are to the 

left of the directed line through 𝑝 and 𝑞 (or on the line segment 𝑝𝑞).

• Runtime 𝑂(𝑛3).



Triangulation of a point set

➢ A triangulation should partition the convex hull while respecting the 

points in the interior



Definition

➢ A triangulation of a finite point set 𝑃 ⊂

ℝ2 is a collection 𝒯 of triangles, such that: 

• 𝑐𝑜𝑛𝑣 𝑃 = 𝑇∈𝒯ڂ 𝑇

• 𝑃 = 𝑇∈𝒯ڂ 𝑉(𝑇) 

• For every distinct pair 𝑆, 𝑇 ∈ 𝒯, the 

intersection 𝑆 ∩ 𝑇 is either a common 

vertex, or a common edge, or empty



Various triangulations



Delaunay triangulation

➢ 𝐷𝑇(𝑃) : no point in 𝑃 is inside the 

circumcircle of any triangle in 𝐷𝑇(𝑃).



Delaunay triangulation

➢ 𝐷𝑇(𝑃) : no point in 𝑃 is inside the 

circumcircle of any triangle in 𝐷𝑇(𝑃).

➢ DT maximizes the smallest angle.



The Lawson Flip algorithm

➢ Edge flip (four points in convex position)



The Lawson Flip algorithm

➢ Edge flip (four points in convex position)

➢ Loop in all subtriangulations of four points in convex position.



Theorem

Let 𝑃 ⊂ ℝ2 be a set of 𝑛 points, equipped with some triangulation 𝒯. The 

Lawson flip algorithm terminates after at most 
𝑛
2

= 𝑂(𝑛2) flips, and the 

resulting triangulation is a DT of 𝑃.

Two-step proof: 

1. The program described above always terminates.

2. The algorithm does what it claims to do, namely the result is a DT.



The Lifting Map

➢ Given a point 𝑝 = 𝑥, 𝑦 ∈ ℝ2, its lifting 𝑙(𝑝) is the point

𝑙 𝑝 = 𝑥, 𝑦, 𝑥2 + 𝑦2 ∈ ℝ3

Unit paraboloid



Property

➢ Lemma: Let 𝐶 ⊂ ℝ2 be a circle of positive radius. The “lifted circle” 𝑙 𝐶 =

{𝑙 𝑝 , 𝑝 ∈ 𝐶} is contained in a unique plane h 𝐶 ⊂ ℝ3.

Proof : 𝑙(𝑝) = 𝑥 + 𝑟𝑐𝑜𝑠𝑡, 𝑦 + 𝑟𝑠𝑖𝑛𝑡, 𝑥2 + 𝑦2 + 𝑟2 + 2𝑥𝑟𝑐𝑜𝑠𝑡 + 2𝑦𝑟𝑠𝑖𝑛𝑡

Let 𝑞 = (𝑥, 𝑦, 𝑥2 + 𝑦2 + 𝑟2), then

𝑙 𝑝 − 𝑞, (2𝑥, 2𝑦, −1) = 0 



Property

➢ Lemma: Let 𝐶 ⊂ ℝ2 be a circle of positive radius. The “lifted circle” 𝑙 𝐶 =

{𝑙 𝑝 , 𝑝 ∈ 𝐶} is contained in a unique plane ℎ 𝐶 ⊂ ℝ3.

➢ A point 𝑝 ∈ ℝ2 is strictly inside (outside, respectively) of 𝐶 if and only if 𝑙(𝑝) 

is strictly below (above, respectively) ℎ(𝐶).



Termination

➢ A Lawson flip can therefore be interpreted as an operation that replaces the 

top two triangles of a tetrahedron by the bottom two ones.



Termination

➢ Lawson flips decrease the height of the 

lifted image of triangulation.

➢ Once an edge has been flipped, it will be 

strictly above the resulting surface and 

never be flipped a second time.

➢ 𝑛 points span at most 
𝑛
2

 edges



The result is a DT

➢ Locally Delaunay: Let Δ, Δ′ be two adjacent triangles in the triangulation 𝐷 that 

results from the Lawson flip algorithm. Then the circumcircle of Δ does not have 

any vertex of Δ′ in its interior, and vice versa.

four points in convex position not in convex position



The result is a DT

➢ Locally Delaunay ⟺globally Delaunay

Proof: all piars { Δ, 𝑝 , 𝑝 ∈ 𝐶(Δ)}. Selete the pair with minimum 𝑑𝑖𝑠𝑡(𝑝, Δ)



Maximize the minimum angle

➢ If there is a long and skinny triangle in a Delaunay triangulation, then there is an 

at least as long and skinny triangle in every triangulation of the point set.



Maximize the minimum angle

➢ A flip replaces six interior angles by six other interior angles, and we will actually 

show that the smallest of the six angles strictly increases under the flip.

Before the flip:

𝛼1 + 𝛼2, 𝛼3, 𝛼4, 𝛼1 , 𝛼2, 𝛼3 + 𝛼4

After the flip:

𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼1 + 𝛼4, 𝛼2 + 𝛼3

𝛼1 > 𝛼1, 𝛼2 > 𝛼2, 𝛼3 > 𝛼3, 𝛼4 > 𝛼4,

𝛼1 + 𝛼4 > 𝛼4, 𝛼2 + 𝛼3 > 𝛼3



DT is not always a good mesh

➢ DT only optimize the connectivity as points are fixed.

➢ Need to optimize vertex positions simultaneously.



Optimal Delaunay triangulation(ODT)

➢ Fix 𝑃 ⊂ ℝ2, optimize 𝒯 s.t. lifted picewise linear image close to unit paraboloid.

➢ Fix 𝒯, optimize 𝑃 ⊂ ℝ2 s.t. lifted picewise linear image close to unit paraboloid.



Optimal Delaunay triangulation(ODT)

➢ 𝑢 𝑝 = 𝑥2 + 𝑦2 and ො𝑢 𝑝 :  piecewise linear interpolation

➢ 𝐸 = σ𝑇∈𝒯 𝑇
| ො𝑢 𝑝 − 𝑢(𝑝)|𝑑𝑝 = σ𝑇∈𝒯 𝑇

ො𝑢 𝑝 𝑑𝑝 + 𝐶

= σ𝑇𝑖𝑗𝑘∈𝒯
𝑇𝑖𝑗𝑘

3
(𝑢 𝑝𝑖 + 𝑢(𝑝𝑗) + 𝑢(𝑝𝑘)) + 𝐶

Fix all other points except 𝑝𝑖:

∇𝑝𝑖
𝐸 = 

𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑖
𝑇𝑖𝑗𝑘

3
(𝑢 𝑝𝑖 + 𝑢(𝑝𝑗) + 𝑢(𝑝𝑘)) + 

𝑇𝑖𝑗𝑘∈Ω𝑖

𝑇𝑖𝑗𝑘

3
∇𝑝𝑖

𝑢 𝑝𝑖 = 0

𝑝𝑖

𝑝𝑘
𝑝𝑗



Property of ∇𝑝𝑖
𝑇𝑖𝑗𝑘

➢ Property 1.  σ𝑇𝑖𝑗𝑘∈Ω𝑖
∇𝑝𝑖

𝑇𝑖𝑗𝑘 = 0

Proof: σ𝑇𝑖𝑗𝑘∈Ω𝑖
∇𝑝𝑖

𝑇𝑖𝑗𝑘 = ∇𝑝𝑖
σ𝑇𝑖𝑗𝑘∈Ω𝑖

𝑇𝑖𝑗𝑘 = ∇𝑝𝑖
𝐶 = 0

𝑝𝑖

𝑝𝑘
𝑝𝑗

𝑝𝑖
′

𝑝𝑘
𝑝𝑗



Property of ∇𝑝𝑖
𝑇𝑖𝑗𝑘

➢ Property 2.  for 𝑝𝑖 , 𝑝𝑙 in one side of  𝑝𝑗𝑝𝑘,  ∇𝑝𝑖
𝑇𝑖𝑗𝑘 = ∇𝑝𝑙

𝑇𝑙𝑗𝑘

for 𝑝𝑖 , 𝑝𝑙 in different sides of  𝑝𝑗𝑝𝑘, ∇𝑝𝑖
𝑇𝑖𝑗𝑘 = −∇𝑝𝑙

𝑇𝑙𝑘𝑗

Proof: denote 𝑟(𝑣) = 𝑒
𝜋

2
𝑖𝑣 represents the 90∘ degree anticlockwise rotation.

Then,  ∇𝑝𝑖
𝑇𝑖𝑗𝑘 =

1

2
𝑟 𝑝𝑘 − 𝑝𝑗 , ∇𝑝𝑙

𝑇𝑙𝑘𝑗 =
1

2
𝑟 𝑝𝑗 − 𝑝𝑘 .

𝑝𝑙

𝑝𝑖

𝑝𝑘

𝑝𝑙

𝑝𝑖

𝑝𝑘

𝑝𝑗 𝑝𝑗



Property of ∇𝑝𝑖
𝑇𝑖𝑗𝑘

➢ Property 3.  for the triangle 𝑇𝑖𝑗𝑘,  ∇𝑝𝑖
𝑇𝑖𝑗𝑘 + ∇𝑝𝑗

𝑇𝑖𝑗𝑘 + ∇𝑝𝑘
𝑇𝑖𝑗𝑘 = 0

Proof: ∇𝑝𝑖
𝑇𝑖𝑗𝑘 + ∇𝑝𝑗

𝑇𝑖𝑗𝑘 + ∇𝑝𝑘
𝑇𝑖𝑗𝑘

=
1

2
𝑟 𝑝𝑘 − 𝑝𝑗 +

1

2
𝑟 𝑝𝑖 − 𝑝𝑘 +

1

2
𝑟 𝑝𝑗 − 𝑝𝑖 = 0.

𝑝𝑖

𝑝𝑘

𝑝𝑗



Optimal Delaunay triangulation(ODT)

Fix all other points except 𝑝𝑖:

∇𝑝𝑖
𝐸 = 

𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑖
𝑇𝑖𝑗𝑘

3
(𝑢 𝑝𝑖 + 𝑢(𝑝𝑗) + 𝑢(𝑝𝑘)) + 

𝑇𝑖𝑗𝑘∈Ω𝑖

𝑇𝑖𝑗𝑘

3
∇𝑝𝑖

𝑢 𝑝𝑖 = 0

As ∇𝑝𝑖
𝑢 𝑝𝑖 = ∇𝑝𝑖

𝑝𝑖
2 = 2𝑝𝑖, denote Ω𝑖 ≜ σ𝑇𝑖𝑗𝑘∈Ω𝑖

𝑇𝑖𝑗𝑘

3
,

𝑝𝑖
∗ = − 

𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑖
𝑇𝑖𝑗𝑘

6 Ω𝑖
𝑢 𝑝𝑗 + 𝑢 𝑝𝑘 = 

𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 + ∇𝑝𝑘

𝑇𝑖𝑗𝑘

6 Ω𝑖
𝑢 𝑝𝑗 + 𝑢 𝑝𝑘



Optimal Delaunay triangulation(ODT)

𝑝𝑖
∗ = − 

𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑖
𝑇𝑖𝑗𝑘

6 Ω𝑖
𝑢 𝑝𝑗 + 𝑢 𝑝𝑘 = 

𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 + ∇𝑝𝑘

𝑇𝑖𝑗𝑘

6 Ω𝑖
𝑢 𝑝𝑗 + 𝑢 𝑝𝑘

𝑝𝑖
∗ =

1

6 Ω𝑖


𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑢 𝑝𝑗 + ∇𝑝𝑗

𝑇𝑖𝑗𝑘 𝑢 𝑝𝑘 + ∇𝑝𝑘
𝑇𝑖𝑗𝑘 𝑢 𝑝𝑗 + ∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑢 𝑝𝑘

=
1

6 Ω𝑖
σ𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑢 𝑝𝑗 + ∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑢 𝑝𝑘

𝑝𝑖

𝑝𝑘
𝑝𝑗



Optimal Delaunay triangulation(ODT)

We prove 𝑝𝑖
∗ is the barycenter 𝑐𝑖 of Ω𝑖

𝑝𝑖
∗ =

1

6 Ω𝑖


𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑢 𝑝𝑗 + ∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑢 𝑝𝑘

Lemma: for ∀𝑞 ∈ ℝ2, let 𝑣 𝑝 ≜ 𝑝 − 𝑞 2 = 𝑢 𝑝 + 𝑞 2 − 2𝑞𝑇𝑝, 

for each 𝑇, ො𝑣 𝑝 − 𝑣(𝑝) = ො𝑢 𝑝 − 𝑢(𝑝).  Then

𝐸 = 

𝑇∈𝒯

න
𝑇

| ො𝑣 𝑝 − 𝑣(𝑝)|𝑑𝑝 = 

𝑇∈𝒯

න
𝑇

ො𝑣 𝑝 𝑑𝑝 + 𝐶

𝑝𝑖

𝑐𝑖



Optimal Delaunay triangulation(ODT)

Fix all other points except 𝑝𝑖 , ∇𝑝𝑖
𝑣 𝑝𝑖 = 2(𝑝𝑖 − 𝑞), similarly

𝑝𝑖
∗ = 𝑞 +

1

6 Ω𝑖


𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑝𝑗 − 𝑞

2
+ ∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑝𝑘 − 𝑞 2

We consider a special Ω𝑙, let 𝑞 = 𝑐𝑙.

Due to σ𝑇𝑙𝑗𝑘∈Ω𝑙
∇𝑝𝑙

𝑇𝑙𝑗𝑘 = 0, then 𝑝𝑙
∗ = 𝑐𝑙.

𝑐𝑙

𝑝𝑙

𝑝𝑗

𝑝𝑘

𝑝𝑖



Optimal Delaunay triangulation(ODT)

Let 𝑞 = 𝑝𝑖, then 

𝑐𝑙 = 𝑞 +
1

6 Ω𝑙
σ𝑇𝑙𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑙𝑗𝑘 𝑝𝑗 − 𝑞

2
+ ∇𝑝𝑘

𝑇𝑙𝑗𝑘 𝑝𝑘 − 𝑞 2

⟹ 𝑐𝑙 = 𝑝𝑖 +
1

6 Ω𝑙
( ∇𝑝𝑗

𝑇𝑙𝑗𝑘 𝑝𝑗 − 𝑝𝑖
2

+ ∇𝑝𝑘
𝑇𝑙𝑗𝑘 𝑝𝑘 − 𝑝𝑖

2

+∇𝑝𝑘
𝑇𝑙𝑘𝑖 𝑝𝑘 − 𝑝𝑖

2 + ∇𝑝𝑗
𝑇𝑙𝑖𝑗 𝑝𝑗 − 𝑝𝑖

2
) 𝑐𝑙

𝑝𝑙

𝑝𝑗

𝑝𝑘

𝑝𝑖



Optimal Delaunay triangulation(ODT)

𝑐𝑙 = 𝑝𝑖 +
1

6 Ω𝑙
( ∇𝑝𝑗

𝑇𝑙𝑗𝑘 𝑝𝑗 − 𝑝𝑖
2

+ ∇𝑝𝑘
𝑇𝑙𝑗𝑘 𝑝𝑘 − 𝑝𝑖

2

+∇𝑝𝑘
𝑇𝑙𝑘𝑖 𝑝𝑘 − 𝑝𝑖

2 + ∇𝑝𝑗
𝑇𝑙𝑖𝑗 𝑝𝑗 − 𝑝𝑖

2
)

𝑐𝑙 = 𝑝𝑖 +
1

6 Ω𝑙
((∇𝑝𝑘

𝑇𝑙𝑗𝑘 + ∇𝑝𝑘
𝑇𝑙𝑘𝑖 ) 𝑝𝑘 − 𝑝𝑖

2 + (∇𝑝𝑗
𝑇𝑙𝑗𝑘 + ∇𝑝𝑗

𝑇𝑙𝑖𝑗 ) 𝑝𝑗 − 𝑝𝑖
2

)

= 𝑝𝑖 +
1

2 𝑇𝑖𝑗𝑘
(∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑝𝑘 − 𝑝𝑖
2 + ∇𝑝𝑗

𝑇𝑖𝑗𝑘 𝑝𝑗 − 𝑝𝑖
2

)

⟹ ∇𝑝𝑘
𝑇𝑖𝑗𝑘 𝑝𝑘 − 𝑝𝑖

2 + ∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑝𝑗 − 𝑝𝑖

2
= 2 𝑇𝑖𝑗𝑘 (𝑐𝑙 − 𝑝𝑖)

𝑐𝑙

𝑝𝑙

𝑝𝑗

𝑝𝑘

𝑝𝑖



Optimal Delaunay triangulation(ODT)

General case:  𝑝𝑖
∗ = 𝑞 +

1

6 Ω𝑖
σ𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑝𝑗 − 𝑞

2
+ ∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑝𝑘 − 𝑞 2

Let 𝑞 = 𝑝𝑖, then 𝑝𝑖
∗ = 𝑝𝑖 +

1

6 Ω𝑖
σ𝑇𝑖𝑗𝑘∈Ω𝑖

∇𝑝𝑗
𝑇𝑖𝑗𝑘 𝑝𝑗 − 𝑝𝑖

2
+ ∇𝑝𝑘

𝑇𝑖𝑗𝑘 𝑝𝑘 − 𝑝𝑖
2

Then 𝑝𝑖
∗ = 𝑝𝑖 +

1

6 Ω𝑖
σ𝑇𝑖𝑗𝑘∈Ω𝑖

2 𝑇𝑖𝑗𝑘 (𝑐𝑖𝑗𝑘 − 𝑝𝑖) = 𝑐𝑖

𝑝𝑖

𝑝𝑘
𝑝𝑗



Basic algorithm

➢ Fix 𝑃 ⊂ ℝ2, optimize 𝒯 s.t. lifted picewise linear image close to unit paraboloid.

➢ Fix 𝒯, optimize 𝑃 ⊂ ℝ2 s.t. lifted picewise linear image close to unit paraboloid.

For iter = 1 , … , maxIter

For vertex id i = 1 , … , n

𝑃𝑖 ← barycenter 𝑐𝑖 of Ω𝑖

End

End

𝑝𝑖

𝑐𝑖



Generalization

➢ Non uniform density: 𝐸 = σ𝑇∈𝒯 𝑇
ො𝑢 𝑥 − 𝑢 𝑥 𝜌(𝑥)𝑑𝑥

➢ Any convex function𝑢, i.e. 𝑢 𝑥, 𝑦 = 𝑒
(𝑥2+𝑦2)

10 , Ω = −5,5 2



Voronoi Diagram



Post Office Problem

➢ Suppose there are 𝑛 post offices 

𝑝1, . . . , 𝑝𝑛 in a city.

➢ Someone who is located at a position 

𝑞 within the city would like to know 

which post office is closest to him.



Post Office Problem

➢ Query in loops (low efficiency)

➢ Basic idea:

• Partition the query space into regions on which 

is the answer is the same.

• In our case, this amounts to partition the plane 

into regions such that for all points within a 

region the same point from 𝑃 is closest.



Post Office Problem



Post Office Problem



Post Office Problem



Post Office Problem



Voronoi cell

➢ Given a set 𝑃 = {𝑝1, . . . , 𝑝𝑛} of points in ℝ2, for 𝑝𝑖 ∈ 𝑃 denote the Voronoi cell 

𝑉𝑃(𝑖) of 𝑝𝑖 by 

𝑉𝑃 𝑖 ≜ {𝑞 ∈ ℝ2, 𝑞 − 𝑝𝑖 ≤ 𝑞 − 𝑝 , ∀𝑝 ∈ 𝑃}

Property:

• 𝑉𝑃 𝑖 =∩𝑗≠𝑖 𝐻(𝑝𝑖 , 𝑝𝑗)

• 𝑉𝑃 𝑖 is non-empty and convex.

• 𝑉𝑃 𝑖 form a subdivision of the plane.

𝑉𝑉 𝑃

𝑉𝐸 𝑃

𝑉𝑅 𝑃



Lemma 1

➢ For every vertex 𝑣∈ 𝑉𝑉(𝑃) the following statements hold.

1) 𝑣 is the common intersection of at least three edges from 𝑉𝐸(𝑃);

2) 𝑣 is incident to at least three regions from 𝑉𝑅(𝑃);

Proof: 
As all Voronoi cells are convex, each interior 
angle is less than 𝜋, thus 𝑘 ≥ 3 of them must 
be incident to 𝑣.



Lemma 1

➢ For every vertex 𝑣∈ 𝑉𝑉(𝑃) the following statements hold.

1) 𝑣 is the common intersection of at least three edges from 𝑉𝐸(𝑃);

2) 𝑣 is incident to at least three regions from 𝑉𝑅(𝑃);

3) 𝑣 is the center of a circle 𝐶(𝑣) through at least three 

points from 𝑃 and 𝐶 𝑣 ∘ ∩ 𝑃 = ∅;

Suppose there exists a point 𝑝𝑙 ∈ 𝐶 𝑣 ∘. Then the 

vertex 𝑣 is closer to 𝑝𝑙 than it is to any of 𝑝1, . . . , 𝑝𝑘,  in 

contradiction to 𝑣 ∈ 𝑉𝑃 𝑖 , 𝑖 = 1, … , 𝑘.



Lemma 2

➢ There is an unbounded Voronoi edge bounding 

𝑉𝑃(𝑖) and 𝑉𝑃(𝑗) ⟺ 𝑝𝑖𝑝𝑗 ∩ 𝑃 = {𝑝𝑖 , 𝑝𝑗} and 𝑝𝑖𝑝𝑗 ∈

𝜕𝑐𝑜𝑛𝑣(𝑃) where the latter denotes the boundary 

of the convex hull of 𝑃.

Proof: There is an unbounded Voronoi edge bounding 𝑉𝑃(𝑖) and 𝑉𝑃(𝑗) ⟺ there 

is a ray 𝜌 ⊂ 𝑏𝑖,𝑗 such that 𝑟 − 𝑝𝑘 > 𝑟 − 𝑝𝑖 = 𝑟 − 𝑝𝑗 , ∀𝑟 ∈ 𝜌 and 𝑝𝑘 ∈

𝑃\{𝑝𝑖 , 𝑝𝑗}. Equivalently, there is a ray 𝜌 ⊂ 𝑏𝑖,𝑗  such that for every point 𝑟 ∈ 𝜌

the circle 𝐶 ∈ 𝐷 centered at 𝑟 does not contain any point from 𝑃 in its interior.



Duality

➢ A straight-line dual of a plane graph 𝐺 is a 

graph 𝐺′ defined as follows: 

choose a point for each face of 𝐺 and 

connect any two such points by a straight 

edge, if the corresponding faces share an 

edge of 𝐺



Delaunay triangulation

➢ Theorem: The straight-line dual of 𝑉𝐷(𝑃) for a set 𝑃 ⊂ ℝ2 of 𝑛 > 3 points in 

general position (no three points from 𝑃 are collinear and no four points from 𝑃

are cocircular) is a triangulation: the unique Delaunay triangulation of 𝑃.

Proof: ⟹
1. convex hull
2. Triangles 
3. Empty circle property

Proof: ⟸
1. Circumcenter is 
selected for each face.
2. Empty circle property.



Centroidal Voronoi tessellations (CVT)

➢ Update vertices



Definition – CVT

➢ A class of Voronoi tessellations 

where each site coincides with 

the centroid (i.e., center of mass) 

of its Voronoi region.

𝑐𝑖 =
𝑉𝑖

𝑥𝜌 𝑥 𝑑𝑥

𝑉𝑖
𝜌 𝑥 𝑑𝑥



Applications – Remeshing



Energy function

𝐸 𝑝1, … , 𝑝𝑛, 𝑉1, … , 𝑉𝑛 = 
𝑖=1

𝑛

න
𝑉𝑖

𝑥 − 𝑝𝑖
2𝑑𝑥

➢ For a fixed set of sites 𝑃 = {𝑝1, . . . , 𝑝𝑛}, the energy function is minimized if 

{𝑉1, … , 𝑉𝑛} is a Voronoi tessellation.

➢ For the fixed regions, the 𝑝𝑖 are the mass centroids 𝑐𝑖 of their corresponding 

regions 𝑉𝑖.



Lloyd iteration

➢ Construct the Voronoi tessellation corresponding to the sites 𝑝𝑖 .

➢ Compute the centroids 𝑐𝑖 of of the Voronoi regions 𝑉𝑖 and move the sites 𝑝𝑖 to 

their respective centroids 𝑐𝑖.

➢ Repeat above steps until satisfactory convergence is achieved.



Lloyd iteration


