Delaunay Triangulations & Voronoi Diagram

USTC, 2024 Spring

Qing Fang, <u>fq1208@mail.ustc.edu.cn</u> <u>https://qingfang1208.github.io/</u>

Delaunay Triangulations

Convex polygon

> A set *P* ⊂ \mathbb{R}^2 is convex if $pq \in P$, $\forall p, q \in P$.

> For every line $l \in \mathbb{R}^2$, the intersection $l \cap P$ is connected

Convex hull

- > conv(P) : convex hull of a finite point set $P \subset \mathbb{R}^2$
- > vertex of $conv(P) : p \notin conv(P \setminus \{p\})$

Trivial algorithms of Convex hull

- Carathéodory's Theorem
 - Test for every point $p \in P$ whether there are $q, r, s \in P \setminus \{p\}$ such that p is inside the triangle with vertices q, r, and s.
 - Runtime $O(n^4)$.
- > The Separation Theorem:
 - Test for every pair $(p,q) \in P^2$ whether all points from $P \setminus \{p, q\}$ are to the left of the directed line through p and q (or on the line segment \overline{pq}).
 - Runtime $O(n^3)$.

Triangulation of a point set

A triangulation should partition the convex hull while respecting the points in the interior

(b) Point set triangulation.

(c) Not a triangulation.

Definition

- > A triangulation of a finite point set P ⊂ \mathbb{D}^2
 - \mathbb{R}^2 is a collection \mathcal{T} of triangles, such that:
 - $\cdot \quad conv(P) = \bigcup_{T \in \mathcal{T}} T$
 - $\cdot P = \bigcup_{T \in \mathcal{T}} V(T)$
 - For every distinct pair S, T ∈ T, the intersection S ∩ T is either a common vertex, or a common edge, or empty

Various triangulations

Delaunay triangulation

DT(*P*) : no point in *P* is inside the
 circumcircle of any triangle in *DT*(*P*).

Delaunay triangulation

- DT(P) : no point in P is inside the
 circumcircle of any triangle in DT(P).
- > DT maximizes the smallest angle.

The Lawson Flip algorithm

> Edge flip (four points in convex position)

(a) Delaunay triangulation.

(b) Non-Delaunay triangulation.

(c) Two Delaunay triangulations.

The Lawson Flip algorithm

- Edge flip (four points in convex position)
- Loop in all subtriangulations of four points in convex position.

Theorem

Let $P \subset \mathbb{R}^2$ be a set of n points, equipped with some triangulation \mathcal{T} . The Lawson flip algorithm terminates after at most $\binom{n}{2} = O(n^2)$ flips, and the resulting triangulation is a DT of P.

Two-step proof:

1. The program described above always terminates.

2. The algorithm does what it claims to do, namely the result is a DT.

The Lifting Map

▷ Given a point $p = (x, y) \in \mathbb{R}^2$, its lifting l(p) is the point

 $l(p) = \left(x, y, x^2 + y^2\right) \in \mathbb{R}^3$

Property

▶ Lemma: Let $C \subset \mathbb{R}^2$ be a circle of positive radius. The "lifted circle" $l(C) = {l(p), p \in C}$ is contained in a unique plane $h(C) \subset \mathbb{R}^3$.

 $Proof: l(p) = (x + rcost, y + rsint, x^2 + y^2 + r^2 + 2xrcost + 2yrsint)$

Let $q = (x, y, x^2 + y^2 + r^2)$, then $\langle l(p) - q, (2x, 2y, -1) \rangle = 0$

Property

- ▶ Lemma: Let $C \subset \mathbb{R}^2$ be a circle of positive radius. The "lifted circle" $l(C) = {l(p), p \in C}$ is contained in a unique plane $h(C) \subset \mathbb{R}^3$.
- > A point $p \in \mathbb{R}^2$ is strictly inside (outside, respectively) of C if and only if l(p)

is strictly below (above, respectively) h(C).

Termination

A Lawson flip can therefore be interpreted as an operation that replaces the top two triangles of a tetrahedron by the bottom two ones.

- (a) Before the flip: the top two triangles of the tetrahedron and the corresponding non-Delaunay triangulation in the plane.
- (b) After the flip: the bottom two triangles of the tetrahedron and the corresponding Delaunay triangulation in the plane.

Termination

- Lawson flips decrease the height of the lifted image of triangulation.
- Once an edge has been flipped, it will be strictly above the resulting surface and never be flipped a second time.

> n points span at most $\binom{n}{2}$ edges

The result is a DT

Locally Delaunay: Let Δ, Δ' be two adjacent triangles in the triangulation D that results from the Lawson flip algorithm. Then the circumcircle of Δ does not have any vertex of Δ' in its interior, and vice versa.

(a) Delaunay triangulation.

(b) Non-Delaunay triangulation.

four points in convex position

not in convex position

The result is a DT

▹ Locally Delaunay ⇔globally Delaunay

Proof: all piars $\{(\Delta, p), p \in C(\Delta)\}$. Selete the pair with minimum $dist(p, \Delta)$

 Δ

Δ

e

(b) The edge e of Δ closest to p and the second triangle Δ' incident to e.

(c) The circumcircle C' of Δ' also contains p, and p is closer to Δ' than to Δ.

Maximize the minimum angle

If there is a long and skinny triangle in a Delaunay triangulation, then there is an at least as long and skinny triangle in every triangulation of the point set.

Maximize the minimum angle

A flip replaces six interior angles by six other interior angles, and we will actually show that the smallest of the six angles strictly increases under the flip.

Before the flip:

 $\alpha_1 + \alpha_2, \alpha_3, \alpha_4, \underline{\alpha_1}, \underline{\alpha_2}, \overline{\alpha_3} + \overline{\alpha_4}$ After the flip:

 $\alpha_{1}, \alpha_{2}, \overline{\alpha_{3}}, \overline{\alpha_{4}}, \underline{\alpha_{1}} + \alpha_{4}, \underline{\alpha_{2}} + \alpha_{3}$ $\alpha_{1} > \underline{\alpha_{1}}, \alpha_{2} > \underline{\alpha_{2}}, \overline{\alpha_{3}} > \alpha_{3}, \overline{\alpha_{4}} > \alpha_{4},$ $\underline{\alpha_{1}} + \alpha_{4} > \alpha_{4}, \underline{\alpha_{2}} + \alpha_{3} > \alpha_{3}$

(a) Four cocircular points and the induced eight angles.

(b) The situation before a flip.

DT is not always a good mesh

- > DT only optimize the connectivity as points are fixed.
- Need to optimize vertex positions simultaneously.

- > Fix $P \subset \mathbb{R}^2$, optimize \mathcal{T} s.t. lifted picewise linear image close to unit paraboloid.
- > Fix \mathcal{T} , optimize $P \subset \mathbb{R}^2$ s.t. lifted picewise linear image close to unit paraboloid.

- > $u(p) = x^2 + y^2$ and $\hat{u}(p)$: piecewise linear interpolation
- $E = \sum_{T \in \mathcal{T}} \int_T |\hat{u}(p) u(p)| dp = \sum_{T \in \mathcal{T}} \int_T \hat{u}(p) dp + C$
 - $= \sum_{T_{ijk} \in \mathcal{T}} \frac{|T_{ijk}|}{3} (u(p_i) + u(p_j) + u(p_k)) + C$

Fix all other points except p_i :

$$\nabla_{p_i} E = \sum_{T_{ijk} \in \Omega_i} \frac{\nabla_{p_i} |T_{ijk}|}{3} (u(p_i) + u(p_j) + u(p_k)) + \sum_{T_{ijk} \in \Omega_i} \frac{|T_{ijk}|}{3} \nabla_{p_i} u(p_i) = 0$$

 p_j

 p_k

 p_i

Property of $\nabla_{p_i} |T_{ijk}|$

> Property 1. $\sum_{T_{ijk} \in \Omega_i} \nabla_{p_i} |T_{ijk}| = 0$

Proof: $\sum_{T_{ijk}\in\Omega_i} \nabla_{p_i} |T_{ijk}| = \nabla_{p_i} \sum_{T_{ijk}\in\Omega_i} |T_{ijk}| = \nabla_{p_i} C = 0$

Property of $\nabla_{p_i} |T_{ijk}|$

> Property 2. for p_i, p_l in one side of $\overline{p_j p_k}, \nabla_{p_i} |T_{ijk}| = \nabla_{p_l} |T_{ljk}|$

for p_i, p_l in different sides of $\overline{p_j p_k}, \nabla_{p_i} |T_{ijk}| = -\nabla_{p_l} |T_{lkj}|$

Proof: denote $r(v) = e^{\frac{\pi}{2}i}v$ represents the 90° degree anticlockwise rotation.

Property of $\nabla_{p_i} |T_{ijk}|$

> Property 3. for the triangle T_{ijk} , $\nabla_{p_i} |T_{ijk}| + \nabla_{p_j} |T_{ijk}| + \nabla_{p_k} |T_{ijk}| = 0$

Proof: $\nabla_{p_i} |T_{ijk}| + \nabla_{p_j} |T_{ijk}| + \nabla_{p_k} |T_{ijk}|$

$$= \frac{1}{2}r(p_k - p_j) + \frac{1}{2}r(p_i - p_k) + \frac{1}{2}r(p_j - p_i) = 0.$$

Fix all other points except p_i :

$$\nabla_{p_i} E = \sum_{T_{ijk} \in \Omega_i} \frac{\nabla_{p_i} |T_{ijk}|}{3} (u(p_i) + u(p_j) + u(p_k)) + \sum_{T_{ijk} \in \Omega_i} \frac{|T_{ijk}|}{3} \nabla_{p_i} u(p_i) = 0$$

As $\nabla_{p_i} u(p_i) = \nabla_{p_i} ||p_i||^2 = 2p_i$, denote $|\Omega_i| \triangleq \sum_{T_{ijk} \in \Omega_i} \frac{|T_{ijk}|}{3}$,

$$p_{i}^{*} = -\sum_{T_{ijk} \in \Omega_{i}} \frac{\nabla_{p_{i}} |T_{ijk}|}{6|\Omega_{i}|} \left(u(p_{j}) + u(p_{k}) \right) = \sum_{T_{ijk} \in \Omega_{i}} \frac{\nabla_{p_{j}} |T_{ijk}| + \nabla_{p_{k}} |T_{ijk}|}{6|\Omega_{i}|} \left(u(p_{j}) + u(p_{k}) \right)$$

$$p_{i}^{*} = -\sum_{T_{ijk} \in \Omega_{i}} \frac{\nabla_{p_{i}} |T_{ijk}|}{6|\Omega_{i}|} \left(u(p_{j}) + u(p_{k}) \right) = \sum_{T_{ijk} \in \Omega_{i}} \frac{\nabla_{p_{j}} |T_{ijk}| + \nabla_{p_{k}} |T_{ijk}|}{6|\Omega_{i}|} \left(u(p_{j}) + u(p_{k}) \right)$$

 $p_{i}^{*} = \frac{1}{6|\Omega_{i}|} \sum_{T_{ijk} \in \Omega_{i}} \nabla_{p_{j}} |T_{ijk}| u(p_{j}) + \nabla_{p_{j}} |T_{ijk}| u(p_{k}) + \nabla_{p_{k}} |T_{ijk}| u(p_{j}) + \nabla_{p_{k}} |T_{ijk}| u(p_{k})$

 $= \frac{1}{6|\Omega_i|} \sum_{T_{ijk} \in \Omega_i} \nabla_{p_j} |T_{ijk}| u(p_j) + \nabla_{p_k} |T_{ijk}| u(p_k)$

We prove p_i^* is the barycenter c_i of Ω_i

$$p_i^* = \frac{1}{6|\Omega_i|} \sum_{T_{ijk} \in \Omega_i} \nabla_{p_j} |T_{ijk}| u(p_j) + \nabla_{p_k} |T_{ijk}| u(p_k)$$

 p_i

Lemma: for $\forall q \in \mathbb{R}^2$, let $v(p) \triangleq ||p - q||^2 = u(p) + ||q||^2 - 2q^T p$,

for each *T*, $\hat{v}(p) - v(p) = \hat{u}(p) - u(p)$. Then

$$E = \sum_{T \in \mathcal{T}} \int_{T} |\hat{v}(p) - v(p)| dp = \sum_{T \in \mathcal{T}} \int_{T} \hat{v}(p) dp + C$$

Fix all other points except p_i , $\nabla_{p_i} v(p_i) = 2(p_i - q)$, similarly

$$p_i^* = q + \frac{1}{6|\Omega_i|} \sum_{T_{ijk} \in \Omega_i} \nabla_{p_j} |T_{ijk}| ||p_j - q||^2 + \nabla_{p_k} |T_{ijk}| ||p_k - q||^2$$

We consider a special Ω_l , let $q = c_l$.

Due to $\sum_{T_{ljk}\in\Omega_l} \nabla_{p_l} |T_{ljk}| = 0$, then $p_l^* = c_l$.

Let $q = p_i$, then

$$c_{l} = q + \frac{1}{6|\Omega_{l}|} \sum_{T_{ljk} \in \Omega_{l}} \nabla_{p_{j}} |T_{ljk}| ||p_{j} - q||^{2} + \nabla_{p_{k}} |T_{ljk}| ||p_{k} - q||^{2}$$

$$\Rightarrow c_{l} = p_{i} + \frac{1}{6|\Omega_{l}|} (\nabla_{p_{j}} |T_{ljk}| ||p_{j} - p_{i}||^{2} + \nabla_{p_{k}} |T_{ljk}| ||p_{k} - p_{i}||^{2} + \nabla_{p_{k}} |T_{lij}| ||p_{j} - p_{i}||^{2})$$

$$+ \nabla_{p_{k}} |T_{lki}| ||p_{k} - p_{i}||^{2} + \nabla_{p_{j}} |T_{lij}| ||p_{j} - p_{i}||^{2})$$

$$p_{i}$$

 p_k

 p_j

 p_l Optimal Delaunay triangulation(ODT) p_i $c_{l} = p_{i} + \frac{1}{6|\Omega_{l}|} (\nabla_{p_{j}} |T_{ljk}| ||p_{j} - p_{i}||^{2} + \nabla_{p_{k}} |T_{ljk}| ||p_{k} - p_{i}||^{2}$ $+\nabla_{p_{k}}|T_{lki}|||p_{k}-p_{i}||^{2}+\nabla_{p_{i}}|T_{lij}|||p_{j}-p_{i}||^{2})$ $c_{l} = p_{i} + \frac{1}{6|\Omega_{l}|} \left(\left(\nabla_{p_{k}} |T_{ljk}| + \nabla_{p_{k}} |T_{lki}| \right) \|p_{k} - p_{i}\|^{2} + \left(\nabla_{p_{j}} |T_{ljk}| + \nabla_{p_{j}} |T_{lij}| \right) \|p_{j} - p_{i}\|^{2} \right)$ $= p_i + \frac{1}{2|T_{ijk}|} \left(\nabla_{p_k} |T_{ijk}| ||p_k - p_i||^2 + \nabla_{p_j} |T_{ijk}| ||p_j - p_i||^2 \right)$ $\Rightarrow \nabla_{p_{k}} |T_{ijk}| ||p_{k} - p_{i}||^{2} + \nabla_{p_{i}} |T_{ijk}| ||p_{j} - p_{i}||^{2} = 2 |T_{ijk}| (c_{l} - p_{i})$

 p_i

General case: $p_i^* = q + \frac{1}{6|\Omega_i|} \sum_{T_{ijk} \in \Omega_i} \nabla_{p_j} |T_{ijk}| ||p_j - q||^2 + \nabla_{p_k} |T_{ijk}| ||p_k - q||^2$ Let $q = p_i$, then $p_i^* = p_i + \frac{1}{6|\Omega_i|} \sum_{T_{ijk} \in \Omega_i} \nabla_{p_j} |T_{ijk}| ||p_j - p_i||^2 + \nabla_{p_k} |T_{ijk}| ||p_k - p_i||^2$ p_i p_k Then $p_i^* = p_i + \frac{1}{6|\Omega_i|} \sum_{T_{ijk} \in \Omega_i} 2|T_{ijk}| (c_{ijk} - p_i) = c_i$ p_i

Basic algorithm

- ▶ Fix $P \subset \mathbb{R}^2$, optimize \mathcal{T} s.t. lifted picewise linear image close to unit paraboloid.
- > Fix \mathcal{T} , optimize $P \subset \mathbb{R}^2$ s.t. lifted picewise linear image close to unit paraboloid.
- For iter = 1 , ... , maxIter For vertex id i = 1 , ... , n $P_i \leftarrow \text{barycenter } c_i \text{ of } \Omega_i$ End

Generalization

> Non uniform density: $E = \sum_{T \in \mathcal{T}} \int_T |\hat{u}(x) - u(x)| \rho(x) dx$

> Any convex function u, i.e. $u(x, y) = e^{\frac{(x^2+y^2)}{10}}$, $\Omega = [-5,5]^2$

Voronoi Diagram

- Suppose there are n post offices $p_1, \ldots, p_n \text{ in a city.}$
- Someone who is located at a position
 q within the city would like to know
 which post office is closest to him.

- > Query in loops (low efficiency)
- > Basic idea:
 - Partition the query space into regions on which
 - is the answer is the same.
 - In our case, this amounts to partition the plane into regions such that for all points within a region the same point from *P* is closest.

The bisector of two points.

faces of the Voronoi diagram

Voronoi cell

Solution $P = \{p_1, \dots, p_n\}$ of points in \mathbb{R}^2 , for $p_i \in P$ denote the Voronoi cell VP(i) of p_i by

 $VP(i) \triangleq \{q \in \mathbb{R}^2, \|q - p_i\| \le \|q - p\|, \forall p \in P\}$

Property:

- $\cdot \quad VP(i) = \cap_{j \neq i} H(p_i, p_j)$
- VP(i) is non-empty and convex.
- VP(i) form a subdivision of the plane.

Example: The Voronoi diagram of a point set.

Lemma 1

> For every vertex $v \in VV(P)$ the following statements hold.

1) v is the common intersection of at least three edges from VE(P);

2) v is incident to at least three regions from VR(P);

Proof: As all Voronoi cells are convex, each interior angle is less than π , thus $k \ge 3$ of them must be incident to v.

Lemma 1

> For every vertex $v \in VV(P)$ the following statements hold. 1) v is the common intersection of at least three edges from VE(P); 2) v is incident to at least three regions from VR(P); eı 3) v is the center of a circle C(v) through at least three points from P and $C(v)^{\circ} \cap P = \emptyset$; Suppose there exists a point $p_l \in C(v)^\circ$. Then the vertex v is closer to p_l than it is to any of p_1, \ldots, p_k , in contradiction to $v \in VP(i), i = 1, ..., k$.

Lemma 2

➤ There is an unbounded Voronoi edge bounding
VP(i) and VP(j) ⇔ $\overline{p_i p_j} \cap P = \{p_i, p_j\}$ and $\overline{p_i p_j} \in$ $\partial conv(P)$ where the latter denotes the boundary
of the convex hull of P.

Proof: There is an unbounded Voronoi edge bounding VP(i) and $VP(j) \Leftrightarrow$ there is a ray $\rho \subset b_{i,j}$ such that $||r - p_k|| > ||r - p_i|| (= ||r - p_j||), \forall r \in \rho$ and $p_k \in P \setminus \{p_i, p_j\}$. Equivalently, there is a ray $\rho \subset b_{i,j}$ such that for every point $r \in \rho$ the circle $C \in D$ centered at r does not contain any point from P in its interior.

Duality

A straight-line dual of a plane graph G is a graph G' defined as follows:
 choose a point for each face of G and
 connect any two such points by a straight
 edge, if the corresponding faces share an
 edge of G

Delaunay triangulation

➤ Theorem: The straight-line dual of VD(P) for a set $P \subset \mathbb{R}^2$ of n > 3 points in general position (no three points from P are collinear and no four points from P are cocircular) is a triangulation: the unique Delaunay triangulation of P.

Proof: ⇒
1. convex hull
2. Triangles
3. Empty circle property

Proof: ⇐
1. Circumcenter is
selected for each face.
2. Empty circle property.

Centroidal Voronoi tessellations (CVT)

> Update vertices

Definition – CVT

A class of Voronoi tessellations
 where each site coincides with
 the centroid (i.e., center of mass)
 of its Voronoi region.

$$c_i = \frac{\int_{V_i} x \rho(x) dx}{\int_{V_i} \rho(x) dx}$$

Applications – Remeshing

Energy function

$$E(p_1, \dots, p_n, V_1, \dots, V_n) = \sum_{i=1}^n \int_{V_i} ||x - p_i||^2 dx$$

- > For a fixed set of sites $P = \{p_1, ..., p_n\}$, the energy function is minimized if $\{V_1, ..., V_n\}$ is a Voronoi tessellation.
- For the fixed regions, the p_i are the mass centroids c_i of their corresponding regions V_i.

Lloyd iteration

- > Construct the Voronoi tessellation corresponding to the sites p_i .
- Compute the centroids c_i of of the Voronoi regions V_i and move the sites p_i to their respective centroids c_i.
- Repeat above steps until satisfactory convergence is achieved.

Lloyd iteration

