Assignment \#1: Simplification with Quadric Error Metric

USTC, 2024 Spring

Qing Fang, fq1208@mail.ustc.edu.cn https://qingfang1208.github.io/

Background

Definition of simplification

> Transform a given polygonal mesh into another mesh with fewer faces, edges, and vertices.

User-defined quality criteria

, Geometric error

User-defined quality criteria

, Geometric error
, Other criteria (curvature)

User-defined quality criteria

- Approximation error
> Other criteria (curvature)

With curvature

User-defined quality criteria

> Approximation error
> Other criteria (curvature, texture)

Local operations

Topological operations

, Decimation (vertex removal)

Topological operations

, Decimation (edge collapse)

Topological operations

> Decimation (half-edge collapse)

Illegal (half-)edge collapses

> If p and q are boundaries vertices, then edge (p, q) should be a boundary edge.

Illegal (half-)edge collapses

> If i and j are boundaries vertices, then edge (i, j) should be a boundary edge.
> For each k incident to both i and $\mathrm{j},\{\mathrm{i}, \mathrm{j}, \mathrm{k}\}$ should be the vertices of a triangle.

Quadric error metric

Quadric error metric (QEM)

- The squared distance of a point x from the plane P :

$$
d(x, P)^{2}=\left(n^{T} x-d\right)^{2}, d=n^{T} y
$$

Denote $\bar{x}=(x, 1)$ and $\bar{n}=(n,-d)$, then

$$
d(x, P)^{2}=\left(\bar{n}^{T} \bar{x}\right)^{2}=\bar{x}^{T} \bar{n} \bar{n}^{T} \bar{x} \triangleq \bar{x}^{T} Q_{P} \bar{x}
$$

$$
P=(y, n)
$$

Quadric error metric (QEM)

$>$ For vertex $i, Q_{i} \triangleq \sum_{i j k} Q_{i j k}$

$$
d\left(x, Q_{i}\right)^{2}=\bar{x}^{T} Q_{i} \bar{x}=\left(x^{T}, 1\right) Q_{i}\binom{x}{1}
$$

When $x=v_{i}, d\left(x, Q_{i}\right)^{2}=0$

Quadric error metric (QEM)

> When edge (i, j) collapses,

$$
d^{2}=d\left(x, Q_{i}\right)^{2}+d\left(x, Q_{j}\right)^{2}=\bar{x}^{T}\left(Q_{i}+Q_{j}\right) \bar{x}
$$

, New position $x=\arg \min \bar{x}^{T}\left(Q_{i}+Q_{j}\right) \bar{x}$

QEM algorithm

, Input: a mesh

Surface simplification using quadric error metrics

 [Garland \& Heckbert 1997], Output: a simplified mesh
Initialization:

- Compute the matrices Q_{i} for each vertex i
- Compute the optimal contraction target v for each edge (i, j)

While $N_{V}>N$ and Cost $_{\min }<t$

- The error $v^{T}\left(Q_{i}+Q_{j}\right) v$ becomes the cost of the edge (i, j)
- Place all the edges in a priority queue keyed on cost with minimum cost edge at the top.
- Remove the edge of the least cost from the heap , collapse this edge, and update the costs of all edges involving.

End

Extension

Vertex attributes Become added dimensions
> Color (x, y, z, r, g, b)

- Texture (x, y, z, u, v)
$>\operatorname{Normal}\left(x, y, z, n_{x}, n_{y}, n_{z}\right)$

Assignment requirements

> QEM algorithm
> Email: ID_name_homework\#1.zip
, Pdf: Input + parameter + output
> Source code (no exe)
> Deadline: 2024.03.10, 23:59

